

बिहार विद्यालय परीक्षा समिति माध्यमिक शिक्षक पात्रता परीक्षा BIHAR STET रसायन विज्ञान

उच्च माध्यमिक स्तर (कक्षा XI से XII) शिक्षक हेतु सॉल्व्ड पेपर्स

एवं
 प्रैक्टिस बुक

प्रधान सम्पादक
आनन्द कुमार महाजन लेखन सहयोग
परीक्षा विशेषज्ञ समिति
कम्प्यूटर ग्राफिक्स
बालकृष्ण त्रिपाठी एवं विनय साहू
सम्पादकीय कार्यालय
12, चर्च लेन, प्रयागराज-211002
(c) मो. : 9415650134

Email : yctap12@gmail.com
website : www.yctbooks.com/www.yctfastbook.com
© All rights reserved with Publisher प्रकाशन घोषणा
सम्पादक एवं प्रकाशक आनन्द कुमार महाजन ने रूप प्रिंटिंग प्रेस, प्रयागराज से मुद्रित करवाकर, यूथ कॉम्पिटिशन टाइम्स, 12, चर्च लेन, प्रयागराज-211002 के लिए प्रकाशित किया। इस पुस्तक को प्रकाशित करने में सम्पादक एवं प्रकाशक द्वारा पूर्ण सावधानी बरती गई है

फिर भी किसी त्रुटि के लिए आपका सुझाव और सहयोग सादर अपेक्षित है।
किसी भी विवाद की स्थिति में न्यायिक क्षेत्र प्रयागराज होगा।

विषय-सूची

सॉल्व्ड पेपर्स

■ माध्यमिक शिक्षक पात्रता परीक्षा Bihar STET रसायन विज्ञान 3-18
[व्याख्या साहित हल प्रश्न पत्र परीक्षा तिथि : 14.09.2023 (Shift-I)]
■ माध्यमिक शिक्षक पात्रता परीक्षा Bihar STET रसायन विज्ञान 19-35
[व्याख्या साहित हल प्रश्न पत्र परीक्षा तिथि : 18.09.2020 (Shift-III)]
प्रैक्टिस सेट
प्रैक्टिस सेट-1 36-45
प्रैक्टिस सेट- 1 का व्याख्या सहित हल 46-58
प्रैक्टिस सेट-2 59-67
■ प्रैक्टिस सेट- 2 का व्याख्या सहित हल 68-80
प्रैक्टिस सेट-3 81-89
■ प्रैक्टिस सेट- 3 का व्याख्या सहित हल 90-101

- प्रैक्टिस सेट-4 102-110
प्रैक्टिस सेट- 4 का व्याख्या सहित हल 111-122
प्रैक्टिस सेट- 5 123-132
■ प्रैक्टिस सेट- 5 का व्याख्या सहित हल 133-144

Syllabus for Uchcha Madhyamic Paper II STET 2023 Unit I Subject Chemistry 100 Marks

Physical Chemistry

Unit-1 Gaseous State Van der Waals equation of state • Relationship between critical constants and Van der Waals constants - Root mean square - Average and most probable velocities •

Unit-2 Solid State Derivation of Bragg equation - Determination of crystal structure of $\mathrm{NaCl}, \mathrm{KCl}$ and $\mathrm{CsCl} \bullet$
Unit-3 Chemical Kinetics and Catalysis Concentration dependence of rates - Mathematical characteristics of zero order, first order, second order, • pseudo order, half life and mean life. Effect of temperature on rate of reaction, Arrhenius equation Expression for the rate constant based on equilibrium constant and thermodynamics aspects. Classification of catalysis \bullet
Unit-4 Colligative properties of dilute solutions The thermodynamics derivations of Rault's law relative lowering vapour • pressure, osmotic pressure, elevation in boiling point, depression in freezing point.
Unit-5 Thermodynamics Calculation of $\mathrm{w}, \mathrm{q}, \mathrm{dU} \bullet \& \mathrm{dH}$ for the expansion of ideal gases under isothermal and adiabetic conditions for reversible process. Hess's Law of heat summation, Heat of reaction at constant pressure and \bullet at constant volume. Enthalpy of neutralization, Bond dissociation energy • Gibbs function(G) and Helmholtz function (A) as thermodynamic • quantities Variation of G and A with P, V and T .
Unit-6 Chemical Equilibrium Equilibrium constant - Le Chatelier's principle
Unit-7 Phase Equilibrium Degree of freedom - Derivation of Gibbs phase rule, phase equlibria of one component system
Unit-8 Electrochemistry Specific conductance and equivalent conductance - Measurement of equivalent conductance, variation of equivalent and - specific conductance with dilution. Arrhenius theory of electrolyte dissociation Ostwald's dilution law - Nernst equation, derivation of cell E.M.F and single electrode potential - Calculation of thermodynamic quantities and cell reactions ($\Delta \mathrm{G}, \Delta \mathrm{H}$ and K)

Inorganic Chemistry

Unit-1 Atomic Structure Quantum numbers, shapes of s, p, d orbitals - Aufbau and Pauli exclusion principles, Hund's multiplicity rule - Electronic configuration of elements - Schrondinger wave equation, significance of wave function
Unit-2 Periodic properties Atomic and ionic radii - Ionization energy \bullet Electron affinity and electronegativity
Unit-3 Chemical Bonding Various types of hybridization and shapes of simple inorganic molecules \bullet and ions. Valence shell electron pair repulsion (VSEPR) theory of NH3, H3O+, SF4 - ClF3 Homonuclear and heteronuclear (CO and NO) diatomic molecules • Radius ratio effect and coordination number • Lattice defects • Semiconductors • Fajan's rule • Hydrogen bonding, Van der Waals forces
Unit-4 S, P Block Elements and noble gases Comparative study, Salient features of hydrides of s block elements • Hydrides, oxides, oxyacids and halides of groups 13-16, hydrides of \bullet boron- diborane , borazine, fullerenes, fluorocarbons, Interhalogens. Structure and bonding of xenon compounds.
Unit-5 Chemistry of Elements of Transition series Coordination numbers and geometry of first transition series • Magnetic behaviour, spectral properties of second and third transition \bullet series.
Unit-6 Coordination compound Isomerism coordination compound • Valence bond theory of transition metal complexes.

- Chelates - Crystal field splitting in octahedral, tetrahedral and square planar - complexes. Types of magnetic behaviour of transition metal complexes. - Electronic spectrum of $[\mathrm{Ti}(\mathrm{H} 2 \mathrm{O}) 6] \cdot 3+$ complex ion.
Unit-7 Acid and Bases Arrhenius, Bronsted-Lowry, Lewis concepts of acids and bases.
Unit-8 Environmental at bio inorganic chemistry Ozone Depletion, Green house effect, Acid rain, smog • Haemoglobin, myoglobin and nitrogen fixation.
Organic Chemistry
Unit-1 Structure and Bonding Hybridisation, bond lengths and bond angles, bond energy, localized and delocalized chemical bond, Van der Waals interactions. Resonance, hyperconjugation, aromaticity, inductive and field effects, hydrogen bonding.
Unit-2 Mechanism of Organic Reactions Types of organic reactions, Reagents- electophiles and necleophiles - Reactive intermediates- Carbocations, carbanions, free radicals, - carbenes, arynes and nitrenes.
Unit-3 Stereochemistry Molecular chirality, optical activity, enantiomers, chiral and achiral • molecules with two stereogenic centres, diastereomers, meso compounds. D \& L and R \& S system of nomenclature Geometrical isomerism in alicyclic compounds
Unit-4 Alkane and Cyclic molecules IUPAC nomenclature , Isomerism and alkane, Wurtz reaction, Kolbe • reaction, free radical halogenation of alkanes
Unit-5 Alkenes, Cycloalkenes and Dienes and Alkynes Mechanism of dehydration of alcohols , dehydrohalogenation of alkyl \bullet halides, Saytzeff rule Electrophilic and free radical additions - Markownikoff's rule, hydroboration-oxidation, Epoxidation, ozonolysis, • hydration, hydroxylation and oxidation with KMnO4. Substitution of allylic and vinylic positions of alkenes. - Polymerisation, Diels-Alder reaction. - Reaction of alkynes, Hydroboration-oxidation, metal ammonia \bullet reductions, oxidation and polymerization.
Unit-6 Arenes and Aromaticity Aromaticity and Huckel rule, Birch reduction
Unit-7 Alkyl and Aryl Halides SN2 and SN1 reaction, The addition elimination and the elimination • addition mechanisms of nucleophilic aromatic substitution reactions. Synthesis and uses of DDT and BHC.
Unit-8 Oxygen containing molecules Classification and nomenclature of elements. - Methods of formation of monohydric alcohols and their reaction - Chemical reaction of vicinal glycols, oxidative cleavage $[\mathrm{Pb}(\mathrm{OAc}) 4$ and HIO 4$]$ and pinacolpinacolone rearrangement. Comparative acidic strengths of alcohols and phenols. - Electrophilic aromatic substitution, acylation and carboxylation. - Fries rearrangement, Claisen rearrangement, Gatterman synthesis, - Reimer-Tierman reaction. Nomenclature of ethers and their formation. - Synthesis of aldehydes and ketones - Mechanism of nucleophilic additions to carbonyl group, benzoin, aldol, • perkin and knoevenagel condensations, wittig reaction, mannich reaction. Oxidation of aldehydes, Baeyer-villiger oxidation of ketones, Cannizzaro • reaction, clemmensen, wolff-kishner, LialH4 and NaBH4, Halogenation of enolizable ketones. Preparation and reaction carboxylic acids and their derivatives, mechanism of decarboxylation, reduction of carboxylic acids. Mechanism of esterification and hydrolysis
Unit-9 Organic compound and nitrogen Structure and nomenclature of amines, separation and mixture of e primary, secondary and tertiary amines, basicity of amines. Reductive animation of aldehydic and ketonic compounds, Gabrielphthalimide reaction, Hofmann bromamide reaction. - Reaction of amines with nitrous acid, aryl diazonium salts and azo \bullet coupling.
Unit-10 Organometallic compounds Grignard reagents-formation, structure and chemical reactions
Unit-11 Heterocyclic compounds Pyrrole, furan thiophene and pyridine- methods of synthesis and • chemical reaction, comparision of basicity Preparation and reactions of indole, quinolone and isoquinoline - Fisher • indole synthesis, Skraup synthesis Unit-12 Bio molecules Monosaccharides, osazone, Erythro and threo diastereomers, maltose, sucrose, lactose and starch Acid-base behaviour of amino acids, constituents of nucleic acids, \bullet double helical structure of DNA. Unit-13 Fat, Oils and Detergents Glycerides, unsaturated oils, saponification value, iodine value, soap and • synthetic detergents. Unit-14 Synthetic Polymers and Dyes Natural and synthetic rubbers, polyeters, polyamides, phenol - formaldehyde resins, urea formaldehyde resins and Zeigler-Natta polymerization. Chemistry and synthesis of methyl orange and phenolphthalein, Alizarin and indigo.

बिहार विद्यालय परीक्षा समिति माध्यमिक शिक्षक पात्रता परीक्षा Bihar STET-2023 रसायन विज्ञान कक्षा-XI-XII

[14.09.2023 Shift-I]

1. The Vander Waal's equation explains the behaviour of/वाण्डर वाल्स का समीकरण किसके व्यवहार की व्याख्या करता है-
(a) Ideal gases/आदर्श गैस
(b) Real gases/वास्तविक गैस
(c) Vapour/वाष्पन
(d) Non-real gases /अवास्तविक गैस

Ans. (b) : वास्तविक गैस का व्यवहार आदर्श गैस व्यवहार प्रदर्शित करता है, क्योंकि अणुओं द्वारा घेरा गया आयतन गैस कुल आयतन की तुलना में नगण्य होता है।
वास्तविक गैस का समीकरण-

$$
\left(\mathrm{P}+\frac{\mathrm{an}^{2}}{\mathrm{~V}^{2}}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}
$$

यदि $\mathrm{n}=1$ मोल

$$
\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{~V}^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}
$$

अतः आदर्श गैस का समीकरण-
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{n}=1$
$\mathrm{PV}=\mathrm{RT}$
इसलिए वाण्डर वाल्स का समीकरण आदर्श गैस समीकरण की व्याख्या करता है।
2. Gases deviate from the ideal gas behaviour because their molecules/गैस, आदर्श गैस व्यवहार से विचलित हो जाती है क्योंकि इनके अणु-
(a) Possess negligible volume/नगण्य मात्रा में आयतन
(b) Have forces of attraction between them उनके बीच आकर्षण बल है
(c) Are polyatomic/बहुपरमाणुक है
(d) Are not attracted to one another एक दूसरे के प्रति आकर्षित नहीं है
Ans. (b) : गैस के अणुओं में आदर्श गैस के व्यवहार से विचलित हो जाती है क्योंकि इनके अणुओं के बीच आकर्षण बल नगण्य होता हैअतः आदर्श गैस के निम्नलिखित गुण हैं-

1. वास्तविक गैस आदर्श गैस के समीकरण का अनुपालन करती है।
2. आदर्श गैस में अणुओं का आयतन पात्र के आयतन की तुलना में नगण्य होता है।
3. आदर्श गैस के अणुओं में आकर्षण बल नहीं होता है।
4. According to Boyle's law the volume of a fixed mass of a gas, at constant temperature, is बॉयल्स के नियम के अनुसार स्थिर तापमान पर गैस के निश्चित द्रव्यमान का आयतन होता है-
(a) directly proportional to its pressure दाब के समानुपाती है
(b) inversely proportional to its pressure दाब के अनुक्रमानुपाती है
(c) the square root of its pressure दाब के वर्गमूल होता है
(d) none of these/इनमें से कोई नहीं

Ans. (b) : बॉयल्स के नियम के अनुसार-"स्थिर ताप पर किसी गैस के निश्चित द्रव्यमान के आयतन दाब के अनुक्रमानुपाती होता है, बॉयल का नियम आदर्श गैस के दाब और आयतन को बताता है।
$\mathrm{P} \propto \frac{1}{\mathrm{~V}}$ (स्थिर ताप पर)
$\mathrm{P}=$ दाब
$\mathrm{V}=$ आयतन
P और $\frac{1}{\mathrm{~V}}$ के मध्य आरेख-ग्राफ

4. The root-mean square deviation is also called.....
वर्ग माध्य मूल के विचलन को कहा जाता है-
(a) Mean deviation/माध्य विचलन
(b) Standard deviation/मानक विचलन
(c) Quartile deviation/चतुर्थक विचलन
(d) None of these/इनमें से कोई नहीं

Ans. (b) : वर्ग माध्य मूल $=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$ होता है
अतः वर्ग माध्य मूल के विचलन को मानक विचलन कहा जाता है। जहाँ,
$\mathrm{R}=$ गैस स्थिरांक
$\mathrm{T}=$ तापमान
$\mathrm{M}=$ अणुभार
5. What does ' θ ' represent in Bragg's Law?

ब्रैग के नियम में θ क्या दर्शाती है?
(a) The angle of incidence of X-rays एक्स-रे का आयतन कोण
(b) The angle of reflection of X-rays एक्स-रे के प्रतिबिंब का कोण
(c) The angle of diffraction of X-rays एक्स-रे का विवर्तन कोण
(d) The angle of refraction of X-rays एक्स-रे का अपवर्तन कोण

Ans. (a) : ब्रैग का नियम-यदि किसी क्रिस्टल के दो क्रमागत समान्तर तलों के बीच की दूरी " d " हो और तरंग दैर्ध्य " λ " की एकवर्णी एक्स किरणें इन तलों पर पृष्ठसर्पी कोण θ पर आपतित हो तो संपोषी विवर्तन के लिए ब्रैग के अनुसार-

$$
2 \operatorname{dsin} \theta=\mathrm{n} \lambda
$$

जहाँ, $\mathrm{n}=1,2,3, \ldots \ldots$.
अतः उपर्युक्त समीकरण को ब्रैग का समीकरण कहते हैं।
ब्रैग समीकरण की व्युत्पत्ति-माना कि किसी क्रिस्टल में परमाणु समान अन्तराल वाले तलों पर स्थित है माना कि CC^{\prime} व DD^{\prime} दो समान्तर क्रिस्टलीय तल हैं जिनके बीच की दूरी अर्थात अन्तराल ' d ' है। माना कि तरंगदैर्ध्य λ का एकवर्णी X -किरण पुंज पृष्ठसर्पी कोण θ पर क्रिस्टलीय तलों पर गिरता है।

समी. (1) व (2) से$2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
6. X-rays have larger wavelengths than which of the following?/एक्स-रे में तरंग दैर्ध्य की लम्बाई निम्नलिखित में से किससे अधिक होता है?
(a) Gamma rays/गामा किरणें
(b) Beta rays/बीटा किरणें
(c) Microwave/माइक्रोवेव
(d) Visible light/दृश्यमान प्रकाश

Ans. (a) : एक्स-रे की तरंग दैर्ध्य की लम्बाई 10 एनएम से कम, लेकिन लगभग 0.01 एनएम से अधिक लम्बी होती हैं, एक्स-रे की खोज 1895 में एक भौतिकी वैज्ञानिक विल्हेम रोएंटजेन ने की थी, गामा-किरणों में विद्युत चुम्बकीय स्पेक्ट्रम की तरंग सबसे कम होती है। माइक्रोवेव में अवरक्त प्रकाश की तुलना में 1 मिमी और 30 सेमी लंबी तरंग दैर्ध्य होती है।
7. Minimum interplanar spacing required for Bragg's diffraction is: /ब्रैग के विवर्तन के लिए आवश्यक न्यूनतम इंटरप्लेनर रिक्ति है
(a) $\lambda / 4$
(b) $\lambda / 2$
(c) λ
(d) 2λ

Ans. (b) : ब्रैग के नियम के अनुसार,
$2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
जहाँ θ पर परमाणुओं के तलों के साथ बनाया गया आपतित किरण का अधिकतम मान $\theta=90^{\circ}$ हो सकता है,
यदि $\mathrm{n}=1 \quad 2 \mathrm{~d}=\mathrm{n} \lambda=\mathrm{d}=\frac{\lambda}{2}$
8. The study of reaction kinetics is called अभिक्रिया गतिकी के अध्ययन को कहा जाता है-
(a) Rate of reaction/अभिक्रिया की दर
(b) Mechanism of reaction/अभिक्रिया का तंत्र
(c) Factors which affect the rate of reaction अभिक्रिया की दर को प्रभावित करने वाले कारक
(d) All of the mentioned/उपर्युक्त में सभी

Ans. (d) : रासायनिक बलगतिकी—रसायन विज्ञान की वह शाखा जिसके अन्तर्गत रासायनिक अभिक्रियाओं के वेग एवं अभिक्रियाओं की क्रियाविधि का अध्ययन किया जाता है जिसे रासायनिक बलगतिकी कहते हैं, अतः बलगतिकी की व्युत्पत्ति ग्रीक भाषा के शब्द kinesis से हुई है जिसका अर्थ होता है गति ऊष्मागतिकी केवल अभिक्रिया की संभाव्यता बताती है।
9. Plotting a graph between temperature and reaction rates can reveal the temperature dependence of reaction rates./तापमान और अभिक्रियाओं दर के बीच एक ग्राफ बनाने से अभिक्रिया दर की तापमान निर्भरता का पता चल सकता है-
(a) Concentration of reactants and temperature अभिकारकों और तापमान की सान्द्रता
(b) Concentration of products and temperature उत्पादों और तापमान की सान्द्रता
(c) Rate constant and temperature दर स्थिरांक और तापमान
(d) Rate of catalysis and temperature दर उत्प्रेरण और तापमान की दर
Ans. (c) : अभिक्रिया वेग की ताप निर्भरता बहुत सी अभिक्रियाएँ ताप की वृद्धि के साथ त्वरित होती है अतः यह पाया गया की किसी रासायनिक अभिक्रिया में 10° ताप वृद्धि से वेग स्थिरांक में लगभग दुगुनी वृद्धि होती है।
अभिक्रिया वेग की ताप पर निर्भरता की व्याख्या आर्रेनिअस से भली-भाँति की जा सकती है इसे सर्वप्रथम रसायन जे. एच. वान्ट हॉफ ने प्रस्तावित किया था किन्तु स्वीडन के रसायन आर्रेनिअस के इसका भौतिक सत्यापन तथा प्रतिपादन किया।

$$
\mathrm{K}=\mathrm{Ae}^{-\mathrm{Ea} / R T}
$$

अतः आर्रेनियस समीकरण में कारक $\mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}, \mathrm{Ea}$ से गतिज ऊर्जा वाले अणुओं की भिन्न संगत होता है।

$$
\ln \mathrm{K}=-\frac{\mathrm{Ea}}{\mathrm{RT}} \ln \mathrm{~A}
$$

$\ln \mathrm{K}$ एवं $1 / \mathrm{T}$ के मध्य वक्र समीकरण

तापमान T_{1} समी. के रूप में निम्न होगा-

$$
\ln \mathrm{K}_{1}=-\frac{\mathrm{Ea}}{\mathrm{RT}_{1}}+\ln \mathrm{A}
$$

और तापमान T_{2} पर

$$
\ln \mathrm{K}_{2}=-\frac{\mathrm{Ea}}{\mathrm{RT}_{2}}+\ln \mathrm{A}
$$

अतः K_{1} तथा K_{2} क्रमशः तापमान T_{1} तथा T_{2} पर वेग स्थिरांक
है- $\quad \ln \mathrm{K}_{2}-\ln \mathrm{K}_{1}=\frac{\mathrm{Ea}}{\mathrm{RT}_{1}}-\frac{\mathrm{Ea}}{\mathrm{RT}_{2}}$

$$
\begin{aligned}
& \ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] \\
& \log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]
\end{aligned}
$$

10. A radioactive decay is always considered as रेडियोधर्मी क्षय को हमेशा माना जाता है-
(a) Zero order reaction/शून्य कोटि की अभिक्रिया
(b) First order Reaction/प्रथम कोटि की अभिक्रिया
(c) Both the above/उपर्युक्त दोनों
(d) Second order reaction/द्वितीय कोटि की अभिक्रिया

Ans. (b) : प्रथम कोटि के दर का समीकरण निम्न प्रकार से लिया जाता है।

$$
\begin{aligned}
& K=\frac{2.303}{t} \log \frac{[R]_{0}}{[R]} \\
& \log \frac{[R]_{0}}{[R]}=\frac{K t}{2.303}
\end{aligned}
$$

अतः अस्थायी नाभिकों के सभी प्राकृतिक तथा कृत्रिम नाभिकीय (रेडियोएक्टिव) क्षय प्रथम कोटि की बलगतिकी के द्वारा होते हैं।

$$
\begin{array}{cc}
{ }_{88}^{226} \mathrm{Ra} \longrightarrow & { }_{2}^{4} \mathrm{He}+{ }_{86}^{222} \mathrm{Rn} \\
\text { वेग } \mathrm{K}[\mathrm{Ra}] \text { अतः } & \mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}
\end{array}
$$

11. The ratio of the rate constant of a reaction at two temperatures differing by $\quad{ }^{\circ} \mathrm{C}$ is called temperature coefficient of reaction. दो तापमानों पर अभिक्रिया की दर स्थिरांक का अनुपात $\quad{ }^{\circ} \mathrm{C}$ को अभिक्रिया का तापमान गुणांक कहा जाता है।
(a) 2
(b) 10
(c) 100
(d) 50

Ans. (b) : किसी रासायनिक अभिक्रिया की दर $10^{\circ} \mathrm{C}$ ताप वृद्धि से दर स्थिरांक में लगभग दुगुनी हो जाती है। अतः किसी पदार्थ के तापमान में वृद्धि द्वारा Ea से अधिक ऊर्जा द्वारा प्राप्त संघट्ट करने वाले अणुओं की संख्या के मान में वृद्धि होती है अतः स्पष्ट है कि वक्र में $(\mathrm{t}+10)$ तापमान पर सक्रियण ऊर्जा या इससे अधिक ऊर्जा प्राप्त अणुओं को प्रदर्शित करने वाले क्षेत्रफल लगभग दो गुना हो जाता है।

12. In a dilute solution, any colligative property depends on/तनु विलयन में कोई भी अणुसंख्या गुण निर्भर करता है।
(a) The total number of neutral species in the solution/विलयन में उदासीन प्रजातियों की कुल संख्या
(b) The total number of ionic species in the solution
विलयन में आयनिक प्रजातियों की कुल संख्या
(c) The total number of species irrespective of whether they are ionic or non-ionic./प्रजातियों की कुल संख्या चाहे वे आयनिक हो या गैर-आयनिक
(d) The types of forces operating between the non-ionic species, ionic species and the solvent molecules
गैर-आयनिक प्रजातियों, आयनिक प्रजातियों और विलायक अणुओं के बीच कार्यरत बलों के प्रकार
Ans. (c) : तनु विलयन के अणुसंख्य गुणधर्म विलयन में उपस्थित कणों की संख्या पर निर्भर करता है। अतः अणुसंख्य गुणधर्म वे गुण जो विलयन के विलेय पदार्थ के अणुओं की सान्द्रता पे निर्भर करता है। अतः विलेय पदार्थ के कणों या अणुओं या आयनों की संख्या या मात्रा पर निर्भर करता है।
13. Molarity of a solution is expressed as:/एक विलयन को मोलरता के रूप में व्यक्त किया जाता है।
(a) the number of moles of a solute present in one litre of the solution.
एक लीटर विलयन में विलेय के मोलों की संख्या
(b) the number of moles of a solute present in 1000 gm of the solvent./विलायक के 1000 ग्राम में उपस्थित विलेय की मोलों की संख्या
(c) the number of gram equivalent of solute present in one litre of solution./एक लीटर विलयन में उपस्थित ग्राम तुल्यांकों की संख्या
(d) the ratio of the number of moles of solute to the total number of moles of solution.
विलयन में कुल मोलों की संख्या विलेय के मोलों की संख्या के अनुपात के बराबर होता है।
Ans. (c) : मोलरता-1 लीटर विलयन में उपस्थित विलेय के ग्राम अणुओं की संख्या को उस विलयन की मोलरता कहलाता है।

मोलरता $(\mathrm{M})=\frac{\text { विलेय की मोलों की संख्या }}{\text { विलयन का आयतन लीटर में }}$
14. Which one of the following is not a colligative property?/निम्नलिखित में से कौन-सा एक अणुसंख्य गुणधर्म नहीं है?
(a) Osmotic pressure./परासरण दाब
(b) Elevation in boiling point./क्वथनांक में उन्नयन
(c) Freezing point./हिमांक बिन्दु
(d) Depression in freezing point.

हिमांक बिन्दु में अवनमन
Ans. (c) : वह ताप जिस पर किसी द्रव को द्रव व ठोस दोनों अवस्थाओं में वाष्पदाब समान हो जाता है तो वह द्रव का हिमांक बिन्दु कहलाता है, लेकिन हिमांक बिन्दु अणुसंख्य गुणधर्म पर निर्भर नहीं करता है।
अतः हिमांक का अवनमन अणुसंख्य गुणधर्म पर निर्भर करता है अतः यह स्पष्ट है कि राउल्ट के नियमानुसार जब एक अवाष्पशील ठोस विलायक में डाला जाता है। तो विलायक का वाष्पदाब कम हो जाता है और अब इसका वाष्पदाब ठोस विलायक के वाष्पदाब के बराबर हो जाता है।
माना कि $\mathrm{T}_{\mathrm{f}}^{\circ}$ शुद्ध विलायक का हिमांक बिन्दु है और जब उसमें अवाष्पशील विलेय घुला है तब उसका हिमांक बिन्दु T_{f} है। अतः हिमांक में कमी $\mathrm{T}_{\mathrm{f}}^{\circ}-\mathrm{T}_{\mathrm{f}}$ के बराबर होगा।

$$
\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{\circ}-\mathrm{T}_{\mathrm{f}} \text { इसे हिमांक का अवनमन कहते हैं। }
$$

15. The enthalpy of formation is nonzero for अशून्य एन्थैल्पी का बनाना-
(a) O_{2}
(b) Cu
(c) O_{3}
(d) H^{+}

Ans. (c) : जब घटक तत्व अपनी मानक अवस्था में होते हैं, तो इसके घटक तत्वों से एक यौगिक के 1 मोल के निर्माण के लिए एन्थैल्पी परिवर्तन होता है अतः किसी भी तत्व के सबसे स्थिर रूप में गठन की मानक एन्थैल्पी शून्य होता है। अतः " O_{3} " ओजोन में परमाणु ऑक्सीजन और आणविक ऑक्सीजन के रूप में मौजूद होता है।
16. The enthalpy of an exothermic reaction

एक ऊष्माक्षेपी अभिक्रिया की एन्थैल्पी है।
(a) Is always Positive /हमेशा धनात्मक होता है
(b) Is always negative/हमेशा ॠणात्मक होता है
(c) Is always zero/हमेशा शून्य होता है
(d) May be positive or negative धनात्मक या ॠणात्मक हो सकता है
Ans. (b) : ऊष्माक्षेपी अभिक्रिया वह अभिक्रिया है जिनमें रासायनिक अभिक्रियाओं में ऊष्मा उत्सर्जित होती है, तो उन्हें ऊष्माक्षेपी अभिक्रिया कहतें हैं।
अतः एन्थैल्पी $(\Delta \mathrm{H})$ हमेशा ऋणात्मक होता है।
जैसे- $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \quad 2 \mathrm{HCl}(\mathrm{g}) \Delta \mathrm{H}=-44.0 \mathrm{k} \mathrm{cal}$.
17. Helmholtz free energy is called हेल्महोल्ट्ज मुक्त ऊर्जा कहलाता है-
(a) Power function/शक्ति फंक्शन
(b) Work function/कार्य फंक्शन
(c) Gibbs function/गिब्स फंक्शन
(d) None of these/इनमें से कोई नहीं

Ans. (b) : किसी निकाय से प्राप्त अधिकतम ऊर्जा जिसको किसी उपयोगी कार्य के रूप में परिवर्तित किया जाता है तो उसे गिब्स युक्त ऊर्जा कहते हैं।

$$
\mathrm{dG}=-\mathrm{SdT}+\mathrm{V} . \mathrm{dP}
$$

$\mathrm{P}=$ दाब, $\mathrm{G}=$ गिब्स मुक्त ऊर्जा, $\mathrm{V}=$ आयतन, $\mathrm{T}=$ तापमान
$\mathrm{S}=$ तन्त्र की एन्ट्रापी
18. At a certain temperature, 50% of HI dissociates into H_{2} and I_{2}. The equilibrium constant is
एक निश्चित तापमान पर HI का $50 \% \mathrm{H}_{2}$ और I_{2} में विघटित हो जाता है। तो सन्तुलन स्थिरांक है-
(a) 1.0
(b) 3.0
(c) 0.5
(d) 0.25

Ans. (d) : दिया है-
$\begin{array}{lll} & 2 \mathrm{HI} & \mathrm{H}_{2}+\mathrm{I}_{2} \\ \text { प्रारम्भ } & \alpha & 0 \\ \mathrm{o} \\ \text { समय } \alpha-0.5 \alpha & 0.25 \alpha 0.25 \alpha\end{array}$

$$
\begin{aligned}
\mathrm{k}_{\mathrm{c}} & =\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}} \\
& =\frac{[0.25 \alpha] \times[0.25 \alpha]}{[0.5 \alpha]^{2}} \\
\mathrm{k}_{\mathrm{c}}= & \frac{0.0625 \alpha^{2}}{0.25 \alpha^{2}} \Rightarrow \mathrm{k}_{\mathrm{c}}=0.25
\end{aligned}
$$

अतः साम्य स्थिरांक $\mathrm{k}_{\mathrm{c}}=0.25$ है
19. According to Le Chatelier's principle, adding heat to a system of solid and liquid at equilibrium will cause the/ला-शातैलिए के सिद्धान्त के अनुसार साम्यावस्था पर ठोस और तरल की प्रणाली ऊष्मा का सिद्धान्त जोड़ने पर होता है।
(a) Amount of solid to decrease ठोस की मात्रा घटने वाली है
(b) Amount of liquid to decrease तरल की मात्रा कम करना
(c) Temperature to rise/तापमान बढ़ना
(d) Temperature to fall/तापमान में कमी

Ans. (a) : ला-शातैलिए का सिद्धान्त-किसी साम्यावस्था पर ताप, दाब, सान्द्रण, आयतन आदि का परिवर्तन किया जाये तो साम्यावस्था ऐसी दिशा में परिवर्तित हो जाती है जिसमें किये गये प्रभाव को दूर कर सके।
ठोसो की द्रवों में विलेयता पर ताप का प्रभाव-वे ठोस जिनका विलयन बनाने पर ऊष्मा अवशोषित होती है अर्थात् अभिक्रियाएं ऊष्माशोषी होती है ऐसे ठोसों की विलेयता ताप बढ़ाने पर बढ़ जाती है क्योंकि ताप बढ़ाने से अग्र अभिक्रिया अधिक होती है।
बर्फ जल

क्योंकि बर्फ का आयतन जल के आयतन से अधिक होता है अतः उपरोक्त साम्य में दाब बनाने से अग्र अभिक्रिया (बर्फ का जल में परिवर्तन) अधिक होगी तथा बर्फ का गलनांक घट जाएगा।
20. In a reversible reaction, if the concentration of reactants are doubled, the equilibrium constant K will
एक उत्क्रमणीय अभिक्रिया में यदि अभिकारकों की सान्द्रता दोगुनी हो जाती है तो संतुलन K देगा।
(a) Change to $1 / 4 \mathrm{~K} / 1 / 4 \mathrm{~K}$ में बदले
(b) Change to $1 / 2 \mathrm{~K} / 1 / 2 \mathrm{~K}$ में बदले
(c) Change to $2 \mathrm{~K} / 2 \mathrm{~K}$ में बदले
(d) Remain the same/समान रहेगा

Ans. (d) : एक उत्क्रमणीय अभिक्रिया में दो पदार्थ संतुलन में होते हैं। यदि प्रत्येक की सान्द्रता दोगुनी कर दी जाए तो संतुलन स्थिरांक समान रहेगा।
उदाहरण-

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \quad 2 \mathrm{HI}
$$

$$
\mathrm{k}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

$\mathrm{k}_{\mathrm{c}}=$ साम्य स्थिरांक
21. How is the distribution among two or more phases at equilibrium determined by?
संतुलन पर दो या दो से अधिक चरणों के बीच वितरण कैसे निर्धारित किया जाता है?
(a) Application of entropy/एन्ट्रापी का अनुप्रयोग
(b) Application of Newton's laws of motion न्यूटन के गति के नियमों का अनुप्रयोग
(c) Application of Gibbs free energy गिब्स मुक्त ऊर्जा का अनुप्रयोग
(d) Application of force/बल का अनुप्रयोग

Ans. (c) : साम्यावस्था पर दो या दो से अधिक चरणों के बीच का वितरण गिब्स मुक्त ऊर्जा का अनुप्रयोग करके निर्धारित किया जाता है। अतः स्थिर ताप दाब पर किसी प्रक्रम में एक तन्त्र की उपयोगी कार्य करने के लिए उपलब्ध अधिकतम ऊर्जा को गिब्स मुक्त ऊर्जा कहते हैं।

जहाँ, $\mathrm{G}=\mathrm{H}-\mathrm{TS}$
$\mathrm{H}=$ तन्त्र की एन्थैल्पी
$\mathrm{T}=$ ' k ' में तन्त्र का ताप है
$\mathrm{S}=$ तन्त्र की एन्ट्रॉपी
22. At equilibrium the total Gibb's free energy for all phases is/साम्यावस्था पर सभी चरणों के लिए गिब्स मुक्त की कुल ऊर्जा होती है।
(a) Minimum/न्यूनतम
(b) Maximum/अधिकतम
(c) Infinity/अनन्त
(d) Zero/शून्य

Ans. (a) : साम्यावस्था पर सभी चरणों के लिए गिब्स मुक्त ऊर्जा का कुल मान न्यूनतम/शून्य हो सकता है। अतः गिब्स ऊर्जा परिवर्तन पर निर्भर करता है।
यदि $\Delta \mathrm{G}$ ॠणात्मक है अतः अभिक्रिया स्वतः प्रवर्तित मानी जाती है तथा अग्र दिशा में संपन्न होती है।
यदि $\Delta \mathrm{G}$ धनात्मक है, तब अभिक्रिया स्वतः प्रवर्तित नहीं होगी, यदि $\Delta \mathrm{G}$ शून्य हो तो अभिक्रिया साम्यावस्था को प्राप्त करेगी।

$$
\Delta \mathrm{G}=\Delta \mathrm{G}^{\mathrm{o}}+\mathrm{RT} \ln \mathrm{Q}
$$

साम्यावस्था पर $\Delta \mathrm{G}=0$ तथा $\mathrm{Q}=\mathrm{k}_{\mathrm{c}}$
23. For a liquid-liquid case, what is phase equilibrium ratio?/द्रव-द्रव के लिए चरण साम्यावस्था का अनुपात क्या है?
(a) Ratio of mole fractions of species in two phases at equilibrium/साम्यावस्था पर दो चरणों में प्रजातियों के मोल अंशों का अनुपात
(b) Ratio of distribution or partition coefficient वितरण का अनुपात या विभाजन गुणांक
(c) Ratio of equilibrium constant साम्यावस्था स्थिरांक का अनुपात
(d) Ratio of heat of supply

ऊष्मा के आपूर्ति का अनुपात
Ans. (b) : भौतिक विज्ञान में विभाजन गुणांक (P) या वितरण गुणांक (D) संतुलन पर दो अमिश्रणीय यौगिक की सान्द्रता का अनुपात है। इसलिए यह अनुपात इन दो तरल पदार्थों में विलेय की घुलनशीलता की तुलना को बताता है। विभाजन गुणांक आमतौर पर यौगिक को अआयनित प्रजातियों के एकाग्रता अनुपात को संदर्भित करता है। जबकि वितरण गुणांक यौगिक के सभी प्रजातियों (आयनित या अआयनित) के एकाग्रता अनुपात को संदर्भित करता है।
24. Which of the following is incorrect at equilibrium?/निम्नलिखित में से कौन-सा साम्यावस्था के लिए गलत है।
(a) There is no net transfer of electrons, so $\mathrm{E}=0$. इलेक्ट्रानों का कोई शुद्ध स्थानांतरण नहीं इसलिए $\mathrm{E}=0$.
(b) There is no net transfer of electrons, so $\mathrm{E}^{\circ}=$ 0 ./इलेक्ट्रॉनों का कोई शुद्ध स्थानांतरण नहीं है इसलिए $\mathrm{E}^{\circ}=0$.
(c) $\mathrm{Q}>\mathrm{K}$.
(d) $\mathrm{Q}<\mathrm{K}$.

Ans. (b) : अभिकारक एवं उत्पादों के किसी अभिक्रिया-मिश्रण में अभिक्रिया की दिशा को पता लगाने में भी साम्यावस्था स्थिरांक का उपयोग किया जाता है इसके लिए हम अभिक्रिया भागफल की गणना करते है।
साम्यावस्था स्थिरांक की ही तरह अभिक्रिया भागफल को भी अभिक्रिया की किसी भी स्थिति के लिए परिभाषित Q_{c} (मोलर सान्द्रण) और Q_{p} (आंशिक दाब) किया जा सकता है। अभिक्रियाभागफल Q_{c} तथा k_{c} के मानो की तुलना करके अभिक्रिया दिशा का बोध करने में उपयोगी है।

- यदि $\mathrm{Q}_{\mathrm{c}}<\mathrm{k}_{\mathrm{c}}$ हो तो नेट अभिक्रिया बाँई से दाईं ओर अग्रसरित होती है।
- यदि $\mathrm{Q}_{\mathrm{c}}>\mathrm{k}_{\mathrm{c}}$ हो तो नेट अभिक्रिया दाईं से बाईं ओर अग्रसरित होती है।
अतः $\mathrm{Q}_{\mathrm{c}}=\mathrm{k}_{\mathrm{c}}$ हो तो नेट अभिक्रिया नहीं होती है।

25. Which of the following relation is correct?

निम्नलिखित में से कौन-सा सम्बन्ध सही है?
(a) $\mathrm{F}=\mathrm{Q} \mathrm{n}$
(b) $n=Q$
(c) $\mathrm{Q}=\mathrm{nF}$
(d) $\mathrm{Q}=\mathrm{n} 2 \mathrm{~F}$

Ans. (c) : $\mathrm{Q}=\mathrm{nF}$ का सम्बन्ध सही है।
$\mathrm{Q}=$ अभिक्रिया भागफल
$\mathrm{n}=$ रेडॉक्स अभिक्रिया में इलेक्ट्रानों की संख्या
$\mathrm{F}=$ फैराडे स्थिरांक
26. The unit of specific conductance (к) is विशिष्ट चालकता (к) इकाई है-
(a) $\mathrm{Ohm} \mathrm{cm} /$ ओम सेमी.
(b) $\mathrm{ohm}^{-1} \mathrm{~cm}^{-1} /$ ओम $^{-1}$ सेमी. ${ }^{-1}$
(c) $\mathrm{ohm}^{-1} \mathrm{~cm} /$ ओम ${ }^{-1}$ सेमी.
(d) ohm cm ${ }^{-1} /$ ओम सेमी. ${ }^{-1}$

Ans. (b) : विशिष्ट चालकता विशिष्ट प्रतिरोध की इकाई को विशिष्ट चालकता के रूप में भी जाना जाता है इसे σ द्वारा दर्शाया जाता है और इसकी S.I. इकाई प्रति मीटर सीमैल या ओम ${ }^{-1}$ सेमी. ${ }^{-}$ 1 है।
27. What is the increasing order for the values of e / m for $/ \mathrm{e} / \mathrm{m}$ का मान का बढ़ता क्रम कौन-सा है-
(a) e, p, n, α
(b) $\mathrm{n}, \mathrm{p}, \mathrm{e}, \alpha$
(c) n, p, α, e
(d) n, α, p, e

Ans. (d) : e/m का बढ़ता क्रम मान n, α, p, e होता है। जिसमें एक इलेक्ट्रॉन और प्रोटान का आवेश परिमाण समान होता है। न्यूट्रॉन पर कोई आवेश नहीं होता है एक अल्फा कण में एक प्रोटॉन से दोगुना चार्ज होता है।
28. Atomic number of an atom will be किसी परमाणु का परमाणु क्रमांक होगा।
(a) Number of electrons./इलेक्ट्रॉनों की संख्या
(b) Number of protons./प्रोटॉनों की संख्या
(c) Number of electrons and protons. इलेक्ट्रॉनों और प्रोटॉनों की संख्या
(d) Number of protons and neutrons. प्रोटॉनों और न्यूट्रॉनों की संख्या
Ans. (b) : किसी नाभिक में प्रोटॉनों की संख्या को परमाणु संख्या कहा जाता है और यह हमेशा उस नाभिक के चारों ओर कक्षा में इलेक्ट्रॉनों की संख्या के बराबर होता है। अतः परमाणु संख्या को 'z' से प्रदर्शित करते हैं।

परमाणु संख्या $=$ प्रोटॉनों की संख्या
29. Nickel has atomic number 28. The correct electronic configuration is
निकेल का परमाणु क्रमांक 28 है तो इसका सही इलेक्ट्रॉनिक है।
(a) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{8} 3 \mathrm{~d}^{10}$
(b) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
(c) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2}$
(d) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{8} 3 \mathrm{~d}^{10}$

Ans. (b): $\mathrm{Ni}(28)=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
अथवा
$\mathrm{Ni}(28)=[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
अतः विकल्प (b) सही है।
30. According to Moseley, a straight-line graph is obtained on plotting/मोसले के अनुसार आलेखन करने पर एक सीधी रेखा का ग्राफ प्राप्त होता है।
(a) The frequencies of characteristic X-rays of elements against their atomic numbers.
तत्वों की परमाणु संख्या के विरूद्ध विशिष्ट एक्स-रे की आवृत्ति।
(b) The square of the frequencies of characteristic X-rays of elements against their atomic numbers /तत्वों की परमाणु संख्या के विरूद्ध विशिष्ट एक्स-रे की आवृत्तियों का वर्ग
(c) The square root of the frequencies of characteristic X-rays of elements against their atomic numbers /तत्वों की परमाणु संख्या के विरूद्ध विशिष्ट एक्स-रे की आवृत्तियों का वर्गमूल
(d) The reciprocal of the frequencies of characteristic X-rays of elements against their atomic numbers /तत्वों की परमाणु संख्या के विरूद्ध विशिष्ट एक्स-रे की आवृत्तियों का व्युत्क्रम
Ans. (b) : मोसले का नियम परमाणुओं द्वारा उत्सर्जित होने वाली विशिष्ट एक्स-किरणों के विषय में प्रयोग को मोसले का नियम कहा जाता है।
अतः मोसले का नियम कहता है कि उत्सर्जित एक्स-किरण की आवृत्ति का वर्गमूल परमाणु संख्या के समानुपातिक होता है।

$$
\sqrt{\mathrm{v}}=\mathrm{A}(\mathrm{Z}-\mathrm{B})
$$

यह एक्स-किरणों आवृत्ति है, Z परमाणु संख्या है A और B स्थिरांक है।
31. The tenth element in the periodic table resides in: /10वां तत्व आवर्त सारणी में स्थित है-
(a) the second period/दूसरे आवर्त में
(b) the fourth period/चतुर्थ आवर्त में
(c) the fifth period/पाँचवें आवर्त में
(d) the eight period/आठवें आवर्त में

Ans. (a) : जैसा कि हम जानते हैं पहले आवर्त में 2 तत्व होते हैं जबकि दूसरे आवर्त में 8 तत्व होते हैं। 10 वाँ तत्व दूसरे आवर्त के अन्तिम छोर पर उपस्थित होता है जो कि एक अक्रिय गैस है अतः हम कह सकते हैं कि 10 वाँ तत्व आवर्त सारणी में दूसरे आवर्त में उपस्थिति होता है।
32. Which of the following order is not in accordance with the property stated against it? निम्नलिखित में से कौन-सा कथन उसके विरूद्ध बताई गई गुण के अनुरूप नहीं है।
(a) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>$ I Oxidising Power $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ ऑक्सीकरण क्षमता
(b) $\mathrm{Hl}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$ Acidic property in water $\mathrm{Hl}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$ जल में अम्लीय गुण
(c) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>$ I Electronegativity
$\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ विद्युत ऋणात्मकता
(d) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>$ I Bond dissociation energy $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ बंधन पृथक्करण ऊर्जा

Ans. (d) : हैलोजन परिवार में ऊपर से नीचे जाने पर बन्धन ऊर्जा का क्रम $\mathrm{Cl}>\mathrm{Br}>\mathrm{F}>\mathrm{I}$ होता है। अतः विकल्प (d) गलत होगा।
33. The correct order of increasing electron gain enthalpy with a negative sign for the elements $\mathrm{O}, \mathrm{S}, \mathrm{F}$, and Cl is :
तत्वों $\mathrm{O}, \mathrm{S}, \mathrm{F}$ और Cl के लिए ॠणात्मक चिन्ह के साथ इलेक्ट्रान लब्धि एन्थैल्पी बढ़ने का सही क्रम है-
(a) $\mathrm{Cl}<$ F $<$ S $<$ O
(b) $\mathrm{O}<$ S $<$ F $<\mathrm{Cl}$
(c) F $<$ S $<$ O $<$ Cl
(d) $\mathrm{S}<\mathrm{O}<\mathrm{Cl}<\mathrm{F}$

Ans. (b) : आवर्त सारणी में बांये से दायें चलने पर इलेक्ट्रान लब्धि एन्थैल्पी बढ़ती है तथा ऊपर से नीचे चलने पर इलेक्ट्रान लब्धि एन्थैल्पी घटती है। जबकि Cl का EA, F की तुलना में ज्यादा होता है जबकि S की EA, O की तुलना में ज्यादा होता है क्योंकि O और F की आकार बहुत छोटा होता है इसलिए इनका इलेक्ट्रॉन लब्धि एन्थैल्पी भी कम होता है अतः इसका सही क्रम इस प्रकार है-
$\mathrm{O}<\mathrm{S}<\mathrm{F}<\mathrm{Cl}$
नोटः आयोग द्वारा उत्तर विकल्प (a) दिया गया है।
34. The maximum number of 90° angles between bond pair-bond pair of electrons is observed in इलेक्ट्राॅनों के बंध युग्म-बंध युग्म के बीच अधिकतम 90° के कोण देखे जाते हैं।
(a) dsp^{2} Hybridisation $/ \mathrm{dsp}^{2}$ संकरण
(b) $\mathrm{sp}^{3} \mathrm{~d}$ Hybridisation $/ \mathrm{sp}^{3} \mathrm{~d}$ संकरण
(c) dsp^{3} Hybridisation $/ \mathrm{dsp}^{3}$ संकरण
(d) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ Hybridisation $/ \mathrm{sp}^{3} \mathrm{~d}^{2}$ संकरण

Ans. (d) :

35. The shape of the molecule depends on the

अणु का आकार निर्भर करता है-

(a) adjacent atom/आसन्न परमाणु
(b) valence electrons/सयोंजी इलेक्ट्रॉन
(c) surroundings/परिवेश
(d) atmosphere/वातावरण

Ans. (b) : VSEPR सिद्धान्त के अनुसार किसी भी अणु का आकार और आकृति उसके बैलेंस इलेक्ट्रान पर निर्भर करता है।
36. In NaCl crystal, the radius ratio is : NaCl में त्रिज्या अनुपात है-
(a) 0.4
(b) 0.98
(c) 1.0
(d) 0.52

Ans. (d) : एक आयनिक क्रिस्टल जाली में त्रिज्या अनुपात का उपयोग आयन की समन्वय संख्या और क्रिस्टल जाली में आयनों की व्यवस्था की भविष्यवाणी के लिए किया जाता हैं

त्रिज्या अनुपात	समन्वय संख्या	छिद्रों की ज्यामिति (खालीपन)
$0.155-0.225$	3	त्रिकोणीय समतल
$0.225-0.414$	4	चतुष्फलकीय
$0.414-0.730$	6	अष्टभुजाकार

सोडियम क्लोराइड क्रिस्टल में क्लोराइड आयनों की सतह केन्द्रित घनीय व्यवस्था होती है। सोडियम आयन अष्टफलकीय रिक्तियों में मौजूद होते हैं। प्रत्येक सोडियम आयन 6 क्लोराइड आयनों से घिरा होता है प्रत्येक क्लोराइड आयन 6 सोडियम आयन से घिरा होता है। अतः सोडियम धनायन की समन्वय संख्या 6 है इसी प्रकार क्लोरीन की समन्वय संख्या 6 है।
त्रिज्या अनुपात नियम के अनुसार 6 की समन्वय संख्या $0.414-$ 0.732 के त्रिज्या अनुपात में मेल खाती है यह दिये गये विकल्पों में से $0.52,0.414-0.732$ की सीमा में है।
37. Which of the following is Not a structure insensitive property?/निम्नलिखित में से कौन-सी संरचना असंवेदनशील गुण नहीं है?
(a) Elastic modulus/लोचदार मापांक
(b) Melting point/गलनांक
(c) Coefficient of thermal expansion थर्मल विस्तार का गुणांक
(d) Electrical resistivity /विद्युत प्रतिरोधकता

Ans. (d) : लोचदार मापांक, गलनांक और थर्मल विस्तार का गुणांक ये सभी असंवेदनशील गुण है। जबकि विद्युत प्रतिरोधकता असंवेदनशील गुण नहीं है।
38. Which of the enlisted compounds is termed as slaked lime? /सूचीबद्ध यौगिकों में से किसको बुझ हुआ चूना कहा जाता है?
(a) Calcium Oxide/कैल्शियम ऑक्साइड
(b) Calcium Hydroxide /कैल्शियम हाइड्राक्साइड
(c) Calcium Sulphate /कैल्शियम सल्फेट
(d) Calcium Carbonate/कैल्शियम कार्बोनेट

Ans. (b) : $\mathrm{Ca}(\mathrm{OH})_{2}$ अथवा कैल्शियम हाइड्राक्साइड को बुझा हुआ चूना कहते हैं।

- इसका रासायनिक सूत्र $\mathrm{Ca}(\mathrm{OH})_{2}$ है।
- बुझा हुआ चूना कैल्शियम पर जल की क्रिया से प्राप्त होता है।
- इसका उपयोग सफेदी के लिए किया जाता है।
- इसका उपयोग सीवेज उपचार में किया जाता है।

39. Which of the following is true about interhalogen compounds?/इंटरहैलोजन यौगिकों के बारे में निम्नलिखित में कौन-सा कथन सत्य है?
(a) They have unpaired electrons उनके पास अयुग्मित इलेक्ट्रान है
(b) They are highly stable /वे अत्यधिक स्थिर है
(c) They are diamagnetic /वे प्रतिचुम्बकीय है
(d) They are paramagnetic /वे अनुचुम्बकीय है

Ans. (c) : ऐसे यौगिक जिसमें दो विशिष्ट प्रकार के हैलोजन होते हैं। उदाहरण के लिए सामान्य इंटरहैलोजन यौगिकों में क्लोरीन मोनोफ्लोराइड, ब्रोमीन ट्राईफ्लोराइड, आयोडीन पेंटाफ्लोराइड, आयोडीन हेप्टा फ्लोराइड आदि शामिल है।
हम कण में परमाणुओं की संख्या के आधार पर इंटरहैलोजन यौगिकों को चार प्रकारों में विभाजित कर सकते हैं। वे इस प्रकार है-
XY-यौगिक
XY_{3}-यौगिक
XY_{5}-यौगिक
XY_{7}-यौगिक

- हम इंटर हैलोजन यौगिकों को वाष्प ठोस या तरल अवस्था में पा सकते हैं।
- यो यौगिक प्रकृति में सहसंयोजक होते हैं।
- ये इंटरहैलोजन यौगिक प्रकृति में प्रतिचुम्बकीय होते हैं, क्योंकि उनके पास बंधन जोड़े ओर एकाकी जोड़े होते हैं।
- इंटर हैलोजन यौगिक अत्यधिक अभिक्रियाशील होते हैं इसका अपवाद फ्लोरीन है।

40. Which of the following elements does not belong to group 16 of the periodic table?
निम्नलिखित में से कौन-सा तत्व आवर्त सारणी के समूह 16 से संबन्धित नहीं है?
(a) Oxygen/ऑक्सीजन
(b) Phosphorus /फास्फोरस
(c) Sulphur/सल्फर
(d) Selenium/सेलेनियम

Ans. (b) : फॉस्फोरस तत्व आवर्त सारणी के समूह 15 से सम्बन्धित है जबकि ऑक्सीजन, सल्फर, सेलेनियम आवर्त सारणी 16 से सम्बन्धित है। समान समूह के यौगिकों का भौतिक गुण और रासायनिक गुण लगभग समान होते हैं।
41. Which groups of elements are called d-block elements in modern periodic table?
आधुनिक आवर्त सारणी में तत्वों के किस समूह को डी-ब्लाक तत्व कहा जाता है?
(a) 1 to $2 / 1$ से 2
(b) 3 to $10 / 3$ से 10
(c) 3 to $12 / 3$ से 12
(d) 13 to $18 / 13$ से 18

Ans. (b) : आधुनिक आवर्त सारणी में 3 से 10 तत्वों के समूह को d -ब्लाक के अन्तर्गत रखा गया है जबकि 1 और 2 को s -ब्लाक में रखा गया है और 11 से 18 तक को P -ब्लाक में रखा गया है तथा f -ब्लाक को आवर्त सारणी में नीचे की ओर रखा गया है।
42. Which block elements are more electropositive in modern periodic table?
आधुनिक आवर्त सारणी में कौन-से ब्लाक के तत्व अधिक धनात्मक है?
(a) s
(b) p
(c) d
(d) f

Ans. (c) : आवर्त सारणी में दिये गये तत्वों में d-ब्लाक के तत्वों का धनात्मक क्षमता सबसे अधिक होती है। आवर्त सारणी में बांये से दांये जाने पर धनविद्युती लक्षण घटता है जबकि ऋण विद्युती लक्षण बढ़ता है, तथा आवर्त सारणी में ऊपर से नीचे जाने पर धनविद्युती लक्षण बढ़ता है तथा ऋण विद्युती लक्षण घटता है।
43. Which block elements are less electropositive in modern periodic table?/आधुनिक आवर्त सारणी में कौन-सा ब्लाक के तत्व कम विद्युत धनात्मक है?
(a) s
(b) p
(c) d
(d) f

Ans. (b) : आवर्त सारणी में p-ब्लाक के तत्व सबसे कम विद्युत धनात्मक है क्योंकि इसमें ज्यादातर अधातु उपस्थित होती है और उनमें इलेक्ट्रान ग्रहण करने की क्षमता अत्यधिक होती है इसलिए ये अत्यधिक विद्युत ॠणात्मक होते है जबकि s, d और f में ज्यादातर धातुएं उपस्थित होती है इसके इलेक्ट्रान त्यागने की क्षमता अधिक होती है इसलिए ये ज्यादा विद्युत धनात्मक होते हैं।
44. The oxygen molecule is paramagnetic. It can be explained by/ऑक्सीजन अणु अनुचुम्बकीय है इसे समझा जा सकता है-
(a) Resonance/अनुनाद
(b) Hybridisation/संकरण
(c) Valence bond theory/वैलेंस बांड सिद्धान्त
(d) Molecular orbital theory आणविक कक्षीय सिद्धान्त
Ans. (d) : ऑक्सीजन अणु का अनुचुम्बकीय गुण आणविक कक्षीय सिद्धान्त के अनुसार समझाया जा सकता है। इस नियम के अनुसार-

- जिन परमाणु में इलेक्ट्रान विभिन्न कक्षाओं में उपस्थित रहते हैं ठीक उसी प्रकार अणु में इलेक्ट्रॉन विभिन्न आण्विक कक्षकों में उपस्थित होते हैं।
- आण्विक कक्षकों में इलेक्ट्रॉन ऊर्जा के बढ़ते हुए क्रम में पाउली का अपवर्जन नियम तथा हुण्ड के नियम के अनुसार भरे जाते हैं।
- आणविक कक्षक बहुकेन्द्रीय होते हैं। आण्विक कक्षक में इलेक्ट्रान दो या दो से अधिक नाभिकों द्वारा प्रभावित होते हैं। जबकि परमाणु कक्षक एकल केन्द्रीय होते हैं। परमाणु कक्षक में कोई इलेक्ट्रान केवल एक ही नाभिक के प्रभाव में होता है।
- एक परमाणु कक्षक के विपरीत चक्रण के दो इलेक्ट्रान रह सकते हैं ठीक उसी प्रकार एक आण्विक कक्षक में भी विपरीत चक्रण के दो इलेक्ट्रान रह सकते हैं।
- जब दो परमाणु कक्षकों का संयोजन किया जाता है तब आणविक कक्षक बनते हैं इसमें से एक को आबंधी आण्विक कक्षक तथा दूसरे को प्रति आबंधी आण्विक कक्षक कहते हैं।

45. According to Werner's theory of coordination compounds,
वर्नर के समन्वय यौगिकों के सिद्धान्त के अनुसार-
(a) Primary valency is ionizable

प्राथमिक संयोजकता आयननीय है।
(b) Secondary valency is ionizable

द्वितीयक संयोजकता आयननीय है।
(c) Primary and secondary valences are ionizable प्राथमिक और द्वितीयक संयोजकता आयनीकरण योग्य है।
(d) Neither primary nor secondary valency is ionizable /न तो प्राथमिक और न ही द्वितीयक संयोजकता आयननीय है।
Ans. (a) : वर्नर के समन्वय यौगिक सिद्धान्त के अनुसार प्राथमिक संयोजकता आयननीय है जबकि द्वितीयक संयोजकता अ-आयनीय है वर्नर सिद्धान्त के अनुसार प्राथमिक संयोजकता समन्वय संख्या के बराबर होती है जबकि द्वितीयक संयोजकता आक्सीकरण संख्या के बराबर होती है।
46. Which of the following compound is paramagnetic?
निम्नलिखित में से कौन सा यौगिक अनुचुम्बकीय है?
(a) Hexa amine chromium (III) ion हेक्सा अमीन क्रोमियम (III) आयन
(b) Tetraamminezinc (II) ion टेट्राएमीनेजिंक (II) आयन
(c) Tetracyanonickelate (II) ion टेट्रासायनोनिकेलेट (II) आयन
(d) Diammine silver (I) ion डाइएमाइन सिल्वर (I) आयन
Ans. (a) : $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
क्रोमियम का आक्सीकरण संख्या +3 है
Cr का इलेक्ट्रॉनिक विन्यास ${ }_{24} \mathrm{Cr}=[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$

इसमें 3 अयुग्मित इलेक्ट्रान उपस्थित होने के कारण यह अनुचुम्बकीय प्रवृति का होता है।
47. As per Arrhenius Concept, Weak Acid among These is_?/आरेहनियस अवधारणा के अनुसार, इसमें से दुर्बल अम्ल है?
(a) HCl
(b) HNO_{3}
(c) HCN
(d) $\mathrm{H}_{2} \mathrm{SO}_{4}$

Ans. (c) : HCN-HCN एक दुर्बल अम्ल है क्योंकि यह पानी में आंशिक रूप से विलेय होता है तथा कम मात्रा में हाइड्रोजन आयन उत्पन्न करता है। जबकि $\mathrm{HCl}, \mathrm{HNO}_{3}$ तथा $\mathrm{H}_{2} \mathrm{SO}_{4}$ पानी में पूर्ण रूप से विलेय होते है तथा ज्यादा मात्रा में H^{+}आयन उत्पन्न करते हैं इसलिए HCN एक दुर्बल अम्ल है जबकि $\mathrm{HNO}_{3}, \mathrm{HCl}$ और $\mathrm{H}_{2} \mathrm{SO}_{4}$ प्रबल अम्ल होते हैं।
48. As per the Bronsted and Lowry Concept, a Base is a Substance that_/ब्रोंसटेड और लोरी अवधारणा के अनुसार क्षार वह पदार्थ है-
(a) Accepts proton/प्रोटॉन स्वीकार करता है
(b) Donates proton/प्रोटॉन दान करता है
(c) Accepts neutron/न्यूट्रॉन स्वीकार करता है
(d) Donates neutron /न्यूट्रॉन दान करता है

Ans. (a) : ब्रांसटेड और लोरी अवधारणा के अनुसार क्षार वह पदार्थ होते हैं जो प्रोटान को स्वीकार करते हैं तथा अम्ल वह पदार्थ है जो प्रोटान का दान करते हैं।
49. Which of the following species can act as Lewis Base?/निम्नलिखित में से कौन सी प्रजाति लुईस अम्ल के रूप में कार्य कर सकती है?
(a) Negatively charged species or Anions and Neutral Species with one lone pair of electrons/इलेक्ट्रॉनों की एक अकेली जोड़ी के साथ ॠणात्मक रूप से आवेशित प्रजातियां या आयन और उदासीन प्रजातियाँ
(b) Positively charged species or Cations and Neutral Species with one lone pair of electrons /इलेक्ट्रॉनों के एक अकेले जोड़े के साथ धनात्मक रूप से आवेशित प्रजातियाँ या धनायन और उदासीन प्रजातियाँ
(c) Molecules in which the central atom has incomplete octet
अणु जिसमें केन्द्रीय परमाणु में अपूर्ण अष्टक होता है।
(d) Simple cations /सरल धनायन

Ans. (a) : इलेक्ट्रॉनों की एक अकेली जोड़ी के साथ ॠणात्मक रूप से आवेशित प्रजातियाँ या आयन और उदासीन प्रजातियाँ लुईस अम्ल के रूप में कार्य कर सकती है।
50. Which of the following gases is not a green house gas?/निम्नलिखित में से कौन-सी गैस ग्रीन हाऊस गैस नहीं है ?
(a) CO
(b) O_{3}
(c) CH_{4}
(d) $\mathrm{H}_{2} \mathrm{O}$ vapour/वाष्पन

Ans. (a) : ग्रीन हाउस प्रभाव-पृथ्वी के वायुमण्डल में फसी और ऊर्जा और हमारी धरती को गर्म कंबल से ढकने के लिए इसे धीरेधीरे विकीर्ण किया जाता है यह अपने तापमान को बनाये रखने के लिए पृथ्वी पर ग्रीन हाउस प्रभाव की प्राकृतिक प्रक्रिया है और पृथ्वी को जीवन के परिपूर्ण बनाती है। ग्रीन हाउस गैस जैसे- $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, जल वाष्प, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CFC}$ और ओजोन है।
51. Photochemical smog occurs in warm, dry and sunny climate. One of the following is not amongst the components of photochemical smog, identify it./फोटोकेमिकल स्माग गर्म शुष्क और धुप वाली जलवायु में होता है, निम्नलिखित में से एक फोटोकेमिकल स्माग के घटकों में से नहीं है, इसकी पहचान करें-
(a) NO_{2}
(b) O_{3}
(c) SO_{2}
(d) Unsaturated hydrocarbon /असंतृप्त हाइड्रोकार्बन

Ans. (c) : प्रकाश रासायनिक धुंध एक प्रकार का वायु प्रदूषण है जो वाहनों के उत्सर्जन और कृषि अपशिष्टों के जलने से उत्पन्न होता है जिसके धुएं से सूर्य के प्रकाश के साथ अभिक्रिया करके द्वितीयक प्रदूषण बनाते हैं।

- वे प्राथमिक उत्सर्जन जैसे जहरीली गैसों NO_{2} आदि के साथ मिलकर फोटो केमिकल स्माग बनाते है।
- प्रकाश रासायनिक धुंध में हमेशा ओजोन गैस या O_{3} प्रदूषक के रूप में होता है।

52. Which of the following statements is not true about classical smog?/क्लासिकल स्माग के बारे में निम्नलिखित में से कौन सा कथन सत्य नहीं है?
(a) Its main components are produced by the action of sunlight on emissions of automobiles and factories./इसके मुख्य घटक ऑटोमोबाइल और कारखानों के उत्सर्जन पर सूर्य के प्रकाश की क्रिया से उत्पन्न होते हैं।
(b) Produced in cold and humid climate. ठंडी और आदि जलवायु में उत्पादित।
(c) It contains compounds of reducing nature. इसमें अपचायक प्रकृति के यौगिक होते हैं।
(d) It contains smoke, fog and sulphur dioxide. इसमें धुंआ, कोहरा और सल्फर डाई ऑक्साइड होता है।

Ans. (a) : फोटोकेमिकल स्माग, क्लासिकल स्माग नहीं होते है इसके मुख्य घटक ऑटोमोबाइल और कारखानों के उत्सर्जन पर सूर्य के प्रकाश की क्रिया से उत्पन्न नहीं होती है।
53. Biochemical Oxygen Demand, (BOD) is a measure of organic material present in water. BOD value less than 5 ppm indicates a water sample to be ./बायोकेमिकल ऑक्सीजन डिमांड (बी.ओ.डी.) पानी में मौजूद कार्बनिक पदार्थों का एक माप है। 5 पी.पी.एम. से कम बी.ओ.डी मान पानी के नमूने को इंगित करता है-
(a) rich in dissolved oxygen. घुलित ऑक्सीजन से भरपूर
(b) poor in dissolved oxygen घुलित ऑक्सीजन में कमी
(c) highly polluted. /अत्यधिक प्रदूषित
(d) not suitable for aquatic life. जलीय जीवन के लिए उपयुक्त नहीं है
Ans. (a) : बायोकेमिकल ऑक्सीजन डिमांड (BOD) वायुजीवी जैविक जीवों द्वारा आवश्यक घुलित ऑक्सीजन (DO) की मात्रा है। - किसी दिये गए जल के नमूने में उपस्थित कार्बनिक पदार्थों को एक निश्चित समय अवधि में निश्चित तापमान पर अपघटित करने के लिए इसकी आवश्यकता होती है।

- BOD का अभिप्राय जैविक अपशिष्ट द्वारा जल प्रदूषण से है। - जल में BOD जितना कम होगा वह उतना ही साफ होती है।
- अगर जल का BOD 5 या इससे कम होता है तो जल में ऑक्सीजन की भरपूर मात्रा घुलित होती है।

54. An sp ${ }^{3}$ hybrid orbital possesses

एक $\mathbf{s p}^{3}$ संकरण कक्षक के पास होता है-
(a) One-fourth's character/एक चौथाई गुण
(b) One-half's character /एक आधी का गुण
(c) One- third's character/एक तिहाई का गुण
(d) two-third's character/दो-तिहाई का गुण

Ans. (a) : एक sp^{3} संकरण कक्षक के पास एक चौथाई गुण होते हैं sp^{3} कक्षक में एक s और 3 p कक्षक होते हैं।
55. Which of the following molecules has the shortest carbon-carbon bond length?
निम्नलिखित में से किस अणु की कार्बन-कार्बन बंधन लम्बाई सबसे कम होती है?
(a) Dimond /हीरा
(b) Ethane/एथेन
(c) Benzene बबेंजीन
(d) Acetylene /एसिटिलीन

Ans. (d) : एसिटिलीन अणु में कार्बन-कार्बन बंधन लम्बाई सबसे कम होती है क्योंकि इसका संकरण sp होता है। इसमें एक सिग्मा और 2 पाई बंध उपस्थित होते हैं। सिग्मा बंधन की लम्बाई पाई बंधन से कम होती है जबकि हीरे में sp^{2} संकरण होता है और बेंजीन में भी sp^{2} संकरण होता है तथा एथेन में sp^{3} संकरण होता है।
56. The nature of intermolecular forces among Benzene molecule is/बेंजीन अणु के बीच अंतरआणविक बलों की प्रकृति है-
(a) Dipole attraction/द्विध्रुवीय आकर्षण
(b) Dispersion forces /लण्डन (फैलाव) बल
(c) ion dipole attraction/आयन द्विध्रुव आकर्षण
(d) hydrogen bonding /हाइड्रोजन बंध

Ans. (b) : बेंजीन अणु अध्रुवीय होता है। इसका नेट द्विध्रुवीय आघूर्ण शून्य होता है अतः इसमें लण्डन बल उपस्थित होता है।
57. The resonance stabilization is highest in अनुनाद स्थिरीकरण सबसे अधिक है-
(a) 1,3-butadiene $/ 1,3$ ब्यूटाडाईन्
(b) Cyclobutadiene/साइक्लोब्यटाडाईन्
(c) 1,3-cyclohexadiene $/ 1,3$ साइक्लोहेक्साडाईन्
(d) Benzene बबेंजीन

Ans. (d) : बेंजीन अणु की संरचना

बेंजीन में अनुनाद स्थिरीकरण सबसे अधिक होता है, क्योंकि बेंजीन में sp^{2} संकरण होता है। इसमें सभी एकल बंध-द्विबंध होते है और सभी द्विबन्ध एकल बंध होते हैं। इसमें अनुनाद अधिक होता है।
58. Completely conjugated monocyclic hydrocarbons are called
पूर्णतः संयुग्मित मोनो साइक्लिक हाइड्रोकार्बन कहलाते हैं-
(a) Arenes/एरीन्स
(b) Allenes/एलीन
(c) Annulenes/एनुलीन
(d) cumulenes/क्यूम्यूलीन

Ans. (c) : एनुलीन को पूर्णतः संयुग्मित मोनोसाइक्लिक हाइड्रोकार्बन कहते हैं।
59. Which of the following is the most reactive towards nucleophiles?
निम्नलिखित में से कौन न्यूक्लियोफाइल के प्रति सबसे अधिक अभिक्रियाशील है?
(a) Acetaldehyde/एसीटैल्डिहाइड
(b) Acetyl chloride/एसिटाइल क्लोराइड
(c) Acetic anhydride/एसिटिक एनहाइड्राइड
(d) Methyl acetate/मिथाइल एसीटेट

Ans. (b) : न्यूक्लियोफिलिक अभिक्रिया की क्रियाशीलता उसके छोड़ने के प्रभाव पर निर्भर करता है जिसकी जितनी छोड़ने की प्रवृत्ति अधिक होती है उसकी उतनी ही न्यूक्लियोफिलीसीटी अधिक होगी अतः दिये गये विकल्पों में एसिटाइड क्लोराइड की अभिक्रियाशीलता सबसे अधिक है।
60. The modern explanation of the Markovnikov rule regarding the addition product accepts the stability of the intermediate
योगात्मक उत्पाद के संबंध में मार्कोवनिकोव नियम की आधुनिक व्याख्या मध्यवर्ती की स्थिरता को स्वीकार करती है-
(a) Carbon radical/कार्बन रेडिकल
(b) Carbocation/कार्बोधनायन
(c) Carbanion/कार्बेऋ्टणायन
(d) Carbene /कार्बाइन

Ans. (b) :

$$
\begin{aligned}
& \mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{3}+\mathrm{Br} \\
& 2^{\circ} \text { कार्बोधनायन }
\end{aligned}
$$

मार्कोनिकोव नियम की आधुनिक व्याख्या में मध्यवर्ती कार्बोधनायन बनता है। जो अधिक स्थिर कार्बोधनायन मुख्य उत्पाद बनाता है।
61. The compound which can show both geometrical isomerism and optical isomerism is वह यौगिक जो ज्यामितीय समावयता और प्रकाशिक समावयता दोनों दिखा सकता है-
(a) Maleic acid/मैलिक अम्ल
(b) Tartaric acid/टार्टरिक अम्ल
(c) Propylene dibromide /प्रोपलीन डाईब्रोमाइड
(d) 1,2- dibromo cyclopropane 1,2 डाईब्रोमो साइक्लोप्रोपेन
Ans. (d) :

1,2 डाई ब्रोमो साइक्लोप्रोपेन दोनों प्रकाशिक और ज्यामितीय समावयवता प्रदर्शित करते हैं।
62. Optically active isomers that are not mirror images of each other are called
प्रकाशिक रूप से सक्रिय आइसोमर्स जो एक दूसरे की दर्पण छवियां नहीं है, कहलाती है-
(a) Enantiomers/इनैंटियोमर
(b) Mesoisomers /मीसोमर्स
(c) Tautomer's /टाटोमर्स
(d) diastereomers /डायस्टिरियोमर्स

Ans. (d) : स्टीरियोइसोमर्स जो किसी वस्तु और उसकी दर्पण छवि के रूप में संबन्धित नहीं होते हों, डायस्टिरियोमर्स कहलाते हैं जो दर्पण छवि नहीं है।
उदाहरण-

63. Which of the following objects is chiral? निम्नलिखित में से कौन सी वस्तु काइरल है-
(a) Hammer /हथौड़ा
(b) Ear/कान
(c) Spoon/चम्मच
(d) Fork /कांटा

Ans. (b) : ऐसी संरचना जिसमें सममिति तल अनुपस्थित होता है उसे काइरल कहा जाता है कान में कोई भी सममिति तल नहीं है अतः इसे हम काइरल कह सकते हैं।
64. The smallest alkane having a 3° carbon is 3° कार्बन वाला सबसे छोटा एल्केन है-
(a) Isopentane/आइसोपेंटेन
(b) 2,3-dimethylbutane $/ 2,3$ डाइमेथिलब्यूटेन
(c) 2,2-dimethylpropane $/ 2,2$ डाइमेथिलप्रोपेन
(d) isobutane/आइसोब्यूटेन

Ans. (d) :

- आइसोब्यूटेन- $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}$
3° कार्बन वाला सबसे छोटा ऐल्केन आइसोब्यूटेन है।

65. Which of the following would yield a single monohalogen derivative?
निम्नलिखित में से कौन-सा एकल मोनोहेलोजन डेरीवेटिव उत्पन्न करेगा?
(a) Propane/प्रोपेन
(b) Cyclopropane/साइक्लोप्रोपेन
(c) Propene/ग्रोपेन
(d) Propyne/प्रोपाइन

Ans. (b) :

एल्केन के क्लोरीनीकरण में हाइड्रोजन को क्लोरीन द्वारा प्रतिस्थापित किया जाता है, साइक्लोप्रोपेन में केवल एक ही प्रकार के हाइड्रोजन मौजूद है इसलिए किसी भी हाइड्रोजन परमाणु से प्रतिस्थापन से वही उत्पाद प्राप्त होगा।
66. The carbon-carbon bond in cyclopropane is called/साइक्लोप्रोपेन में कार्बन-कार्बन बंधन को कहा जाता है-
(a) sigma bond/सिग्मा बंध
(b) Pi bond /पाई बंध
(c) tau bond/ताऊ बंध
(d) delta bond /डेल्टा बंध

Ans. (c) :

साइक्लोप्रोपेन में ताऊ बंध उपस्थित होता है।
67. The IUPAC name of t-butyl group is t-ब्यूटाइल समूह का IUPAC नाम है-
(a) 1,1 dimethylethyl $/ 1,1$ डाइमिथाइलइथाइल
(b) 2-methylpropyl /2-मिथाइलप्रोपाइल
(c) 1-methylpropyl/1-मिथाइलप्रोपाइल
(d) 1-methylethyl/1-मिथाइलइथाइल

Ans. (a) :

t -ब्यूटाइल का IUPAC नाम 1,1 डाईमिथाइलइथाइल है।
68. Which of the following reagents would convert 1-butyne into 2-butyne?
निम्नलिखित में से कौन सा अभिकर्मक 1-ब्यूटाइन को 2 -ब्यूटाइन में परिवर्तित करेगा?
(a) Ethanolic KOH , heat/एथेनालिक KOH , ऊष्मा
(b) $\mathrm{NaNH}_{2} / \mathrm{NH}_{3}$
(c) Ammoniacal $\mathrm{AgNO}_{3} /$ अमोनिकल AgNO_{3}
(d) Ammonical $\mathrm{CuCl} /$ अमोनिकल CuCl

Ans. (a) :
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\stackrel{\mathrm{KOH}}{\longrightarrow}} \mathrm{CH}_{3}-\stackrel{+}{\mathrm{CH}}-\mathrm{C} \equiv \mathrm{CH} \rightarrow \mathrm{CH}_{3}-\underset{\downarrow \mathrm{KOH}}{\mathrm{CH}}=\mathrm{C}=\overline{\mathrm{CH}}$
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \stackrel{-2 \mathrm{H}_{2} \mathrm{O}}{-2 \mathrm{H}^{\prime}} \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH} \longleftarrow \mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}=\mathrm{CH}$
एथेनालिक KOH 1 -ब्यूटाइन को 2 -ब्यूटाइन में बदल देता है।
69. The presence of unsaturation in an organic compound can be detected by
किसी कार्बनिक यौगिक में असंतृप्ति की उपस्थिति का पता लगाया जा सकता है-
(a) Schiff's reagent/शिफ अभिकर्मक
(b) Tollens reagents /टोलेंस अभिकर्मक
(c) Fehling's solution/फेहलिंग विलयन
(d) Baeyer's reagent/बेयर अभिकर्मक

Ans. (d) : असंतृप्ति की उपस्थिति का परीक्षण बेयर परीक्षण विधि द्वारा किया जाता है, जो की 1% क्षारीय पोटैशियम परमैंग्नेट का विलयन होता है।
70. The index of hydrogen deficiency (IHD) of benzene is
बेंजीन का हाइड्रोजन कमी सूचकांक (IHD) होता है।
(a) 2
(b) 3
(c) 4
(d) 6

Ans. (c) : बेंजीन का आणविक सूत्र $\mathrm{C}_{6} \mathrm{H}_{6}$ है।
$\operatorname{IHD}=\sum_{=3+1=4} \frac{\mathrm{n}(\mathrm{v}-2)}{2}+1=\frac{6(4-2)+6(1-2)}{2}+1$
बेंजीन के लिए IHD 4 होता है, $3, \pi$ बन्धन और एक चक्रिय संरचना द्वारा।
71. The nitration of benzene is an example of बेंजीन का नाइट्रेशन एक उदाहरण है-
(a) Nucleophilic substitution न्यूक्लियोफिलिक प्रतिस्थापन
(b) Nucleophilic addition/न्यूक्लियोफिलिक योगात्मक
(c) Electrophilic addition/इलेक्ट्रोफिलिक योगात्मक
(d) Electrophilic substitution इलेक्ट्रोफिलिक प्रतिस्थापन
Ans. (d) : बेंजीन का नाइट्रेशन एक एरोमैटिक इलेक्ट्रोफिलिक प्रतिस्थापन अभिक्रिया है, जिसमें एक इलेक्ट्रोफाइल बेंजीन रिंग पर हमला करता है, और रिंग पर एक हाइड्रोजन निकाल कर नाइट्रो समूह जुड़ जाता है और नाइट्रोबेंजीन का उत्पादन होता है।

72. Which of the following represents an electrophilic aromatic substitution reaction?
निम्नलिखित में से कौन इलेक्ट्रोफिलिक ऐरोमैटिक प्रतिस्थापन अभिक्रिया का प्रतिनिधित्व करता है?
(a) Wurtz reaction/वुर्ट्ज अभिक्रिया
(b) Friedel craft alkylation/फ्रीडल क्राफ्ट एल्किलेशन
(c) Kolbe synthesis by electrolysis कोल्बे इलेक्ट्रोलिसिस
(d) Dehydrohalogenation/डिहाइड्रोहैलोजनीकरण

Ans. (b) : फ्रीडेल-क्राफ्ट्स अभिक्रिया एक कार्बनिक युग्मन अभिक्रिया है, जिसमें इलेक्ट्रोफिलिक ऐरोमैटिक प्रतिस्थापन होता है। फ्रीडेल-क्राफ्ट्स अभिक्रिया के दो प्राथमिक प्रकार एल्किलेशन और एसाइलेशन अभिक्रियाएँ है।

73. Aromatic compounds burn with a sooty flame because/ऐरोमैटिक यौगिक कालिख की ज्वाला से जलते हैं क्योंकि-
(a) They have a ring structure उनके पास एक रिंग संरचना है।
(b) They are reluctant to react with atmospheric oxygen /वे वायुमंडलीय ऑक्सीजन के साथ अभिक्रिया करने में अनिच्छुक हैं।
(c) They have a relatively high percentage of carbon/उनमें कार्बन का प्रतिशत अपेक्षाकृत अधिक है।
(d) They have a relatively high percentage of hydrogen उनमें हाइड्रोजन का प्रतिशत अपेक्षाकृत अधिक है।
Ans. (c) : ऐरोमैटिक यौगिक कालिख की लौ से जलते हैं, क्योंकि इनमें कार्बन परमाणु की रिंग संरचना होती है, इससे कार्बन रिंग का अधूरा दहन होता है। इस प्रकार वे कालिखयुक्त ज्वाला देते हैं।
74. The rate of nitration of phenol is

फिनोल में नाइट्रेशन दर हैं-
(a) Slower than that of benzene बेंजीन की तुलना में धीमा
(b) Much faster than that of benzene बेंजीन की तुलना में बहुत तेज
(c) Equal to that of benzene /बेंजीन के बराबर
(d) Almost zero /लगभग शून्य

Ans. (b) : इलेक्ट्रोफिलिक प्रतिस्थापन अभिक्रिया के प्रति बेंजीन की तुलना में फिनॉल अधिक अभिक्रियाशील होता है। रिंग सिस्टम में ऑक्सीजन की अकेली जोड़ी इलेक्ट्रॉन के दान से रिंग के चारों ओर इलेक्ट्रॉन घनत्व बढ़ जाता है। यह रिंग को बेंजीन की तुलना में अधिक अभिक्रियाशील बनाता है।
75. which of the following does not produce a white precipitate of AgCl on warming with alcoholic silver nitrate?/निम्नलिखित में से कौन अल्कोहालिक सिल्वर नाइट्रेट के साथ गम करने पर AgCl का सफेद अवक्षेप उत्पन्न नहीं करता है।
(a) Allyl Chloride/एलिल क्लोराइड
(b) t-butyl chloride $/ t$-ब्यूटाइल क्लोराइड
(c) Benzyl chloride/बेंजाइल क्लोराइड
(d) Vinyl chloride/विनाइल क्लोराइड

Ans. (d) : विनायल क्लोराइड सफेद अवक्षेप नहीं देता है। क्योंकि Cl सीधे तौर पर sp^{2} संकरित कार्बन से जुड़ा हुआ है। इसलिए C Cl बन्धन एक बंधन है, Cl^{-}और आयन बनाना मुश्किल है।
76. Which of the following will react with water? निम्नलिखित में से कौन पानी के साथ अभिक्रिया करेगा?
(a) CHCl_{3}
(b) $\mathrm{Cl}_{3} \mathrm{CCHO}$
(c) CCl_{4}
(d) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$

Ans. (b) : क्लोरल $\left(\mathrm{Cl}_{3} \mathrm{C}-\mathrm{CHO}\right)$ पानी के साथ अभिक्रिया करेगा और क्लोरल मोनो हाइट्रेट बनाता है।

नोटः- आयोग द्वारा उत्तर विकल्प (a) दिया गया है।
77. Reaction of ethyl benzoate with an excess of Phenyl magnesium bromide in dry ether and subsequent hydrolysis produces
शुष्क ईथर में फिनाइल मैग्नीशियम ब्रोमाइड की अधिकता के साथ एथिल बेंजोएट से अभिक्रिया करने और हाइड्रोलिसिस के बाद उत्पाद बनता है।
(a) Benzophenone/बेंजाफिनोन
(b) propiophenone/ प्रोपियोफिनोन
(c) Diphenylmethanol/डाइफेनिलमेथेनॉल
(d) triphenylmethanol/ट्राइफेनिलमेथेनॉल

Ans. (d) : एथिल बेंजोएट में एक इलेक्ट्रोफिलिक एस्टर क्रियात्मक समूह होता है, और फेनिलमैग्नीशियम ब्रोमाइड एक ग्रिगनार्ड अभिकर्मक है जो न्यूक्लियोफिलिक के रूप में कार्य करता है। इसलिए फेनिलमैग्नीशियम ब्रोमाइड एथिल बेंजोएट के एस्टर क्रियात्मक समूह पर हमला करता है।

Triphenyl methanol
78. which one of the following compounds is most readily hydrolyzed by $\mathrm{S}_{\mathrm{N}} 1$ mechanism?
निम्नलिखित में से कौन-सा यौगिक $\mathrm{S}_{\mathrm{N}} 1$ तन्त्र द्वारा सबसे आसानी से जल अपघटित होता है।
(a) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{Cl}$
(b) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$
(c) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}-\mathrm{Cl}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$

Ans. (c) : $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रिया का दर-निर्धारिण चरण में कार्बोकेटायन का निर्माण होता है, जिसमें तृतीयक कार्बोधनायन द्वितीयक कार्बोधनायन की तुलना में अधिक स्थिर होते हैं, जो की प्राथमिक (और मिथाइल) कार्बोधनायन की तुलना में कहीं अधिक स्थिर होते हैं। अतः तृतीयक एल्काइल हैलाइड $\mathrm{S}_{\mathrm{N}} 1$ अभिक्रियाओं की दर सबसे तेज है।

79. Benzaldehyde reacts with PCl_{5} to give बेंजाल्डिहाइड PCl_{5} के साथ अभिक्रिया करके देता है-
(a) Benzyl Chloride/बेंजाइल क्लोराइड
(b) Benzo trichloride/बेंजो ट्राइक्लोराइड
(c) Benzal chloride/बेंजल क्लोराइड
(d) chlorobenzene/क्लोरोबेंजीन

Ans. (a) :

Benzyl chloride
जब बेंजाल्डिहाइड PCl_{5} के साथ अभिक्रिया करता है, तो बेंजल क्लोराइड का उत्पाद होता है।
नोट:- आयोग द्वारा उत्तर विकल्प (a) माना गया है।
80. Methanol can be distinguished from ethanol by मेथनॉल को इथेनॉल से अलग किया जा सकता है-
(a) Sodium / सोडियम
(b) Lucas reagent/लुकॉस अभिकर्मक
(c) Tollens reagent/टोलेन्स अभिकर्मक
(d) I_{2} and $\mathrm{NaOH} / \mathrm{I}_{2}$ और NaOH

Ans. (d) : मेथनॉल और इथेनॉल को एक आयोडोफॉर्म परीक्षण द्वारा अलग किया जाता है, जब इथेनॉल को NaOH की उपस्थिति में आयोडीन के साथ गर्म किया जाता है, तो पीले रंग का अवक्षेप बनता है, लेकिन मेथेनॉल आयोडोफॉर्म परीक्षण नहीं देता है।
81. Piperidine is $\mathbf{a} /$ पाइपरिडिन एक उदाहरण है-
(a) homocyclic compound/होमोसायक्लिक यौगिक
(b) heterocyclic aromatic compound विषमचक्रीय एरोमैटिक यौगिक
(c) nonaromatic heterocyclic compound गैर-एरोमैटिक विषमचक्रीय यौगिक
(d) acyclic compound/एसायक्लिक यौगिक

Ans. (c) :

पाइपरिडिन एक गैर अरोमैटिक विषमचक्रीय यौगिक है।
82. Ethyl amine can be prepared by the action of Br_{2} and NaOH solution on
किस यौगिक पर Br_{2} और NaOH विलयन का क्रिया करने पर एथिल एमाइन तैयार किया जाता है।
(a) acetamide/एसिटामाइड
(b) propionamide/प्रोपियोनामाइड
(c) formamide/फार्मामाइड
(d) methyl cyanide /मिथाइल साइनाइड

Ans. (b) : हॉफमैन ब्रोमामाइड अभिक्रिया में प्रोपियोनामाइड को एथिल एमाइन में परिवर्तित किया जा सकता है।
हॉफमैन ब्रोमामाइड अभिक्रिया में 1 कार्बन परमाणु कम के साथ प्राथमिक एमाइन प्राप्त करने के लिए $\mathrm{Br}_{2} / \mathrm{NaOH}$ के अभिक्रिया किया जाता है।
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{NH}_{2}+\mathrm{Br}_{2}+\mathrm{NaOH} \rightarrow \underset{\text { एथिल एमाइन }}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}}$
83. The aromaticity of the following heterocycles follows the order/निम्नलिखित विषमचक्रों की एरोमैटिक क्रम का अनुसरण करती है-
(a) Thiophene $>$ pyrrole $>$ furan $>$ pyridine थायोफीन $>$ पाइरोल $>$ फ्यूरान $>$ पाइरीडीन
(b) Furan $>$ pyrrole $>$ thiophene $>$ pyridine फ्यूरान $>$ पाइरोल $>$ थायोफीन $>$ पाइरीडीन
(c) Pyridine $>$ thiophene $>$ Pyrrole $>$ furan पाइरीडीन $>$ थायोफीन $>$ पाइरोल $>$ फ्यूरान
(d) Pyridine $>$ furan $>$ Pyrrole $>$ thiophene पाइरीडीन $>$ फ्यूरान $>$ पाइरोल $>$ थायोफीन
Ans. (c) : विषमचक्रों की एरोमैटिक क्रम-
पाइरीडीन > थायोफीन > पाइरोल > फ्यूरान
पाइरीडीन को एरेमैटिक होने के लिए 6π इलेक्ट्रॉन की आवश्यकता होती है और यह समतल और संयुग्मित भी होता है। पाइरोल में 4π इलेक्ट्रॉन होते हैं, और नाइट्रोजन पर इलेक्ट्रानों की एक जोड़ी एरोमैटिक प्राप्त करने के लिए रिंग के साथ अनुनाद में भाग लेता है। इसलिए पाइरीडीन, पाइरोल की तुलना में अधिक एरोमैटिक होता है।
84. Which one amongst the following compounds is the least basic?/निम्नलिखित यौगिकों में से कौन सा सबसे कम क्षारीय है-
(a) Piperidine /पाइपरीडीन
(b) Pyridine /पिरिडिन
(c) Pyrrole/पाइरोल
(d) Quinoline/क्विनोलिन

Ans. (c) : पाइरोल वास्तव में अन्य की तुलना में कम क्षारीय है। पाइरोल में नाइट्रोजन परमाणु एक ऐरोमैटिक वलय का हिस्सा हैं, जो कि अन्य यौगिक में नाइट्रोजन परमाणु का लोन पेयर एरोमैटिक का भाग नहीं है।
85. Which of the following compounds gives a secondary alcohol upon reaction with methyl magnesium bromide?
निम्नलिखित में से कौन सा यौगिक मिथाइल मैग्नीशियम ब्रोमाइड के साथ अभिक्रिया करने पर द्वितीयक अल्कोहल देता है?
(a) Butyl formate/ब्यूटाइल फार्मेट
(b) 3-pentanone $/ 3$-पेंटानोन
(c) Pentanal/पेंटेनल
(d) Methyl butanoate/मिथाइल ब्यूटानोएट

Ans. (c) : मिथाइल मैग्नेशियम ब्रोमाइड के साथ अभिक्रिया करने पर पेंटेनल एक द्वितीयक अल्कोहल देता है, क्योंकि ग्रिग्नार्ड अभिक्रिया क्रमशः कीटोन और एल्डिहाइड के साथ तृतीयक या द्वितीयक अल्कोहल देता है।

86. Which is not present in Grignard reagent? ग्रिग्नार्ड अभिकर्मक में कौन मौजूद नहीं है-
(a) Methyl group /मिथाइल समूह
(b) Magnesium /मैग्नीशियम
(c) Halogen /हैलोजन
(d) -COOH group $/-\mathrm{COOH}$ समूह

Ans. (d) : -COOH समूह ग्रिग्नार्ड अभिकर्मक में मौजूद नहीं रहता है। ग्रिग्नार्ड अभिकर्मक में मिथाइल, मैग्नीशियम और हैलोजन उपस्थित होता है।
87. Which of the following compounds does not give a tertiary alcohol upon reaction with methyl magnesium bromide?
निम्नलिखित में से कौन सा यौगिक मिथाइल मैग्नीशियम ब्रोमाइड के साथ अभिक्रिया करने पर तृतीयक अल्कोहल नहीं देता है।
(a) 3-methylpentanal $/ 3$-मिथाइलपेंटनल
(b) Ethyl benzoate/एथिल बेंजोएट
(c) 4,4-dimethylcyclohexanone 4,4 -डाइमिथाइलसाइक्लोहेक्सानोन
(d) 4-heptanone $/ 4$-हेप्टानोन

Ans. (d) : 4-हेप्टानोन मिथाइल मैग्नीशियम ब्रोमाइड के साथ तृतीयक अल्कोहल नहीं देता है, क्योंकि ग्रिग्नार्ड प्रतिक्रिया क्रमशः तृतीयक या द्वितीयक अल्कोहल बनाने के लिए कीटोन या एल्डिहाइड में आर्गेनोमैग्नीशियम हैलाइड जोड़ा जाता है।
88. The protein which transports oxygen in the bloodstream is/वह प्रोटीन जो रक्तप्रवाह में ऑक्सीजन का परिवहन करता है-
(a) Haemoglobin /हीमोग्लोबिन
(b) insulin/इंसुलिन
(c) Albumin/एल्बुमिन
(d) collagen/कोलेजन

Ans. (a) : लाल रक्त कोशिकाओं के अन्दर हीमोग्लोबिन अणु ऑक्सीजन लेते हैं और ले जाते हैं। ये ऑक्सीजन युक्त कोशिकाएँ फेफड़ों से हृदय के बाईं ओर रक्त वाहिकाओं में यात्रा करती है, फिर रक्त को पूरे शरीर में पम्प किया जाता है।
89. The secondary structures of proteins of silk and wool are
रेशम और ऊन के प्रोटीन की द्वितीयक संरचनाएँ हैं-
(a) α-helix and β-pleated sheet respectively क्रमशः α-हेलिक्स और β-प्लीटेड शीट
(b) β-pleated sheet and α-helix respectively क्रमशः β-प्लीटेड शीट और α-हेलिक्स
(c) Both α-helix/दोनों α-हेलिक्स
(d) Both β-pleated sheet/दोनों β-प्लीटेड शीट

Ans. (b) : रेशम और ऊन की द्वितीयक संरचना में रेशम की द्वितीयक संरचना में β-प्लीटेड शीट (समानान्तर β-प्लीटेड शीट) और ऊन की द्वितीयक संरचना में एक अल्फा हेलिक्स (दाहिनी ओर α-हेलिक्स) से निर्मित होता है।
90. Formation of soap from a fat by reaction with caustic soda involves
कास्टिक सोडा के साथ अभिक्रिया करके वसा से साबुन निर्माण में शामिल है-
(a) hydrolysis/हाइड्रोलिसिस
(b) polymerization/पोलीमराइजेशन
(c) Esterification/एस्टेरिफिकेशन
(d) condensation/संक्षेपण

Ans. (a) : कास्टिक सोडा या सोडियम हाइड्राक्साइड तेल/वसा के साथ अभिक्रिया करके हाइड्रोलिसिस अभिक्रिया से गुजरता है, जिसे सैपोनिफिकेशन कहा जाता है, जिससे साबुन और ग्लिसरॉल बनाता है।
91. Turpentine is an essential oil obtained from तारपीन एक आवश्यक होता है जो प्राप्त होता है-
(a) camphor tree/कपूर का पेड़
(b) Pine tree/चीड़ का पेड़
(c) Lemon tree/नींबू का पेड़
(d) palm tree/ताड़ का पेड़

Ans. (b) : तारपीन का तेल चीड़ के पेड़ या पाइनल से प्राप्त रेजिन के आसवन से बनने वाला तरल पदार्थ है। इसका उपयोग विलायक और तेल आधारित पेन्ट के रूप में किया जाता है।
92. Among the following which one has the least iodine number?/निम्नलिखित में से किसकी आयोडीन संख्या सबसे कम है?
(a) Sunflower oil/सूरजमुख तेल
(b) Corn oil/मकई का तेल
(c) Ghee/घी
(d) Peanut oil/मूंगफली का तेल

Ans. (c) : घी में सबसे कम आयोडीन होता है। शुद्ध गाय के घी के लिए आयोडीन का मान 35.53 से 41.22 के बीच होता जो की औसत मान 38.69 होता है, और शुद्ध भैंस के घी में आयोडीन 30.34 से 36.48 होता है, जिसका औसत 34.10 होता है।
93. Which of the following gives maximum energy in a metabolic process?
निम्नलिखित में से कौन उपाचयन प्रक्रिया में अधिकतम ऊर्जा देता है?
(a) Carbohydrates/कार्बोहाइड्रेट
(b) Proteins/प्रोटीन
(c) Fats/वसा
(d) Vitamins/विटामिन

Ans. (c) : किसी भी अन्य जैव अणु की तुलना में वसा अणुओं से अधिकतम ऊर्जा प्राप्त की जा सकती है, किसी भी पोषक तत्व से ऊर्जा उसके ऑक्सीकरण के माध्यम से होती है।
94. The polymers that cannot form intermolecular hydrogen bond are/वे पॉलिमर जो अंतरआणिक हाइड्रोजन बन्ध नहीं बना सकते हैं-
(a) Nylon 6/नायलॉन 6
(b) Polythene/पालिथीन
(c) Proteins/प्रोटीन
(d) Nylon 6,6/नायलॉन 6,6

Ans. (b) : पालिथीन में वह पॉलिमर है, जिसमें अन्तरआण्विक हाइड्रोजन बन्ध नहीं बना सकते हैं।

$$
\begin{gathered}
\mathrm{nCH}_{2} \\
\underset{\text { ईथाइलिन }}{=\mathrm{CH}_{2}} \longrightarrow \underset{\text { पालिथिन }}{\left[\mathrm{CH}_{2}-\mathrm{CH}_{2}\right\}_{\mathrm{n}}}
\end{gathered}
$$

95. Among the following which one is homopolymers
निम्नलिखित में से कौन सा एक होमोपॉलिमर है-
(a) Bakelite/बैकेलाइट
(b) Terylene/टेरिलीन
(c) 6,6
(d) Neoprene/नियोप्रीन

Ans. (d) : मोनोमर्स सही परिस्थितियों में, पॉलिमराइजेशन से गुजरते हैं और लंबी श्रृंखला वाले पॉलिमर बनाते हैं। इन पॉलिमर के गुण मोनोमर की प्रकृति, शाखा के प्रकार आदि के आधार पर भिन्न होते हैं। एक ही प्रकार की मोनोमर इकाइयों से बनने वाले बहुलक को होमोपॉलिमर कहते हैं।
नियोप्रीन केवल क्लोरोप्रीन से तैयार किया जा सकता है। अभिक्रिया नीचे दी गई है-

96. The catalyst used in the manufacture of polyethylene by Ziegler-Natta process is ज़िग्लर नाटा प्रक्रिया द्वारा पॉलिथीन के निर्माण में प्रयुक्त उत्प्रेरक
(a) Triphenylaluminium and titanium tetrachloride ट्राइफेनिलएलुमिनियम और टाइटेनियम ट्रेटाक्लोराइड
(b) Triethylaluminium and titanium tetrachloride ट्राइएथिलएलुमिनियम और टाइटेनियम टेट्राक्लोराइड
(c) Titanium dioxide/टाइटेनियम डाइऑक्साइड
(d) Titanium isopropoxide टाइटेनियम आइसोप्रोपॉक्साइड
Ans. (b) : ज़िग्लर-नाटा उत्प्रेरक में आमतौर पर टाइटेनियम, वैनेडियम, क्रोमियम, ज़िरकोनियम और गैर-संक्रमण धातुओं के कार्बनिक डेरिवेटिव, विशेष रूप से एल्काइल एल्युमीनियम यौगिकों जैसे संक्रमण धातुओं से संबंधित हैलाइड के कई मिश्रण होते हैं। ट्राइऐथिल एल्युमीनियम तथा टाइटेनियम टेट्राक्लोराइड (ज़िग्लरनाटा उत्प्रेरक) एक उत्प्रेरक है जिसका उपयोग 1 -अल्कीन के संश्लेषण में होता है।
97. Which of the following is used as defoliant? निम्नलिखित में से किसका उपयोग डिफोलिएंट के रूप में किया जाता है?
(a) Gammaxene/गैमेक्सीन
(b) $\mathrm{DDT} /$ डीडीटी
(c) 2,4-dichlorophenoxyacetic acid

2, 4-डाइक्लोरोफेनॉक्सीएसिटिक एसिड
(d) Acetylsalicylic acid/एसिटलसैलिसिलिक एसिड

Ans. (c) : फसल भूमि और लॉन के प्रबंधन में खरपतवारों को चुनिंदा तरीके से हटाने के लिए डिफोलिएंट्स का व्यापक रूप से उपयोग किया जाता है।
2, 4-डाइक्लोरोफेनॉक्सीएसिटिक एसिड वसा तरह का रसायन है जो युद्ध में इस्तेमाल होने वाले पेड़ों और पौधों से पत्तियों को अलग करता है।
98. Which of the following is not a semisynthetic polymer?/निम्नलिखित में से कौन सा अर्थ सिंथेटिक बहुलक नहीं है?
(a) cis-polyisoprene/सिस-पालीआइसोप्रीन
(b) Cellulose nitrate/सेलुलोज नाइट्रेट
(c) Cellulose acetate/सेलुलोज एसीटेट
(d) Vulcanised rubber/वलनीकृत रबर

Ans. (a) : सिस-पालीआइसोप्रीन एक अर्ध सिंथेटिक बहुलक नहीं है जबकि और सभी अर्ध सिंथेटिक बहुलक है।
99. The commercial name of polyacrylonitrile is पालीएक्रिलोनिट्राइल का व्यावसायिक नाम है-
(a) Dacron/डैक्रान
(b) Orlon (acrilan)/आरलॉन (एक्रिलान)
(c) $\mathrm{PVC} /$ पी.वी.सी.
(d) Bakelite/बैकेलाइट

Ans. (b) : पालीएक्रिलोनिट्राइल का व्यावसायिक नाम आरलॉन (एक्रिलान) है।

100. Which one is acidic dye? कौन सा अम्लीय रंजक है-
(a) Methyl orange/मेथिल आरेंज
(b) Methyl red/मिथाइल रेड
(c) Phenolphthalein/फेनाल्फथेलिन
(d) All of these/ये सभी

Ans. (d) : एसिड डाई एक प्रकार की सिंथेटिक डाई होती है। इसका उपयोग विभिन्न पॉलीमर मिट्टी और सतहों को रंगने के लिए किया जाता है। ये रंग आयनिक होते हैं। पानी में घुल सकते हैं और मुख्य रूप से अम्लीय स्थान पर लगाये जाते हैं। इसमें $\mathrm{SO}_{3} \mathrm{H}$ और COOH जैसे अम्लीय समूहों की संरचना होती है। इनका उपयोग ऊन, रेशम और नायलॉन जैसे कई कपड़ों में रंग जोड़ने के लिए किया जाता है।

- अम्लीय रंगों की समग्र धुलाई स्थिरता खराब है लेकिन हल्की स्थिरता बढ़िया है।
- उसके पास विभिन्न सामग्रियों से जुड़ने की मजबूत क्षमता होती है।
ये रंग आयनिक प्रवृत्ति के होते हैं और पानी में घुलनशील होते हैं।

बिहार विद्यालय परीक्षा समिति माध्यमिक शिक्षक पात्रता परीक्षा Bihar STET-2020 रसायन विज्ञान कक्षा-XI-XII

[18.09.2020 Shift-III]
व्याख्या सहित हल प्रश्न-पत्र
[4.00: 6.30 PM]

1. "At the same temperature and pressure, equal volume of all gases contains equal number of molecules. "This is based on which law"?
"समान ताप एवं दाब पर गैसों के समान आयतन में अणुओं की संख्या समान होती है" यह कथन किसन नियम पर आधारित है?
(a) Berzelius law/बर्जेलियस का नियम
(b) Avogadro's law/एवो गाड्रो की परिकल्पना
(c) Grahm's law/ग्राहम का नियम
(d) Charle's law/चार्ल्स का नियम

Ans. (b) : एवोगाड्रो की परिकल्पना कहता है कि समान ताप एवं दाब पर गैसों के समान आयतन में अणुओं की संख्या समान होती है।
2. 20 ml of CO is exploded with 30 ml of oxygen at room temperature. Which of the following will be the volume of gaseous mixture after the reaction?
20 ml CO को 30 ml ऑक्सीजन के साथ कमरे के तापक्रम पर विस्फोट कराया गया। अभिक्रिया के बाद - मिश्रण का आयतन निम्नलिखित में कौन होगा?
(a) 50 ml
(b) 40 ml
(c) 30 ml
(d) 70 ml

Ans. (b) :

$$
\begin{aligned}
& 2 \mathrm{CO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2} \\
& 20 \mathrm{ml} 30 \mathrm{ml}
\end{aligned}
$$

यहाँ पर CO एक सीमान्त अभिकर्मक है।
$2 \mathrm{ml} \mathrm{CO}, 1 \mathrm{ml} \mathrm{O}_{2}$ से अभिक्रिया करता है,
अतः $20 \mathrm{ml} \mathrm{CO}=\frac{20 \times 1}{2}=10 \mathrm{ml} \mathrm{O}_{2}$
बचा हुआ $\mathrm{O}_{2}=(30-10) \mathrm{ml}$

$$
=20 \mathrm{ml} .
$$

- $2 \mathrm{ml} \mathrm{CO} .2 \mathrm{ml} \mathrm{CO}_{2}$ का उत्पाद करता है।

अतः $20 \mathrm{ml} \mathrm{CO}, 20 \mathrm{ml} \mathrm{CO}_{2}$ का उत्पाद करेगा।
गैस मिश्रण का आयतन $=\mathrm{V}_{\mathrm{CO}_{2}}+\mathrm{V}_{\mathrm{O}_{2}}$ (बचा हुआ)

$$
\begin{aligned}
& =20+20 \\
& =40 \mathrm{ml}
\end{aligned}
$$

3. The size of nucleus is in the range of which of the following?
नाभिक का आकार निम्नलिखित में किस के रेंज में होता है?
(a) $10^{-15} \mathrm{~m}$
(b) $10^{-12} \mathrm{~m}$
(c) $10^{-8} \mathrm{~m}$
(d) $10^{-10} \mathrm{~m}$

Ans. (a) : नाभिक का आकार $10^{-15} \mathrm{~m}$ के रेंज में होता है।
4. At high temperature and law pressure, The Van dor walls equation becomes
उच्च ताप एवं निम्न दाब पर वान् डर वाल्स समीकरण हो जाता है।
(a) $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{v}^{2}}\right)(\mathrm{V})=\mathrm{RT}$
(b) $\mathrm{PV}=\mathrm{RT}$
(c) $\mathrm{P}(\mathrm{V}-\mathrm{b})=\mathrm{RT}$
(d) $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{v}^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$

Ans. (b) : उच्च ताप एवं निम्न दाब पर वाने डर वाल्स समीकरण $\mathrm{PV}=\mathrm{RT}$ हो जाता है। क्योंकि, उच्च ताप और निम्न दाब पर, 'b' की तुलना में 'V' बड़ा है।
और ' P ' की तुलना में $\frac{\mathrm{a}}{\mathrm{V}^{2}}$ नगण्य है,
अतः समीकरण $\mathrm{PV}=\mathrm{RT}$ में बदल जाता है।
5. If $\Delta \mathrm{S}$ for an endothermic reaction is positive, then the reaction is feasible
यदि एक उष्माशोषी अभिक्रिया के लिए $\Delta \mathrm{S}$ का मान धनात्मक है, तो यह अभिक्रिया संभव है।
(a) When $\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H} /$ जब $\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H}$
(b) $\Delta \mathrm{H}>\mathrm{T} \Delta \mathrm{S} / \Delta \mathrm{H}>\mathrm{T} \Delta \mathrm{S}$
(c) At all temperature/सभी तापों पर
(d) Non-feasible/संभव नहीं है

Ans. (a) : यदि उष्माशोषी अभिक्रिया के लिए एन्ट्रापी में परिवर्तन $(\Delta \mathrm{S})$ सकारात्मक है, यदि एन्थैल्पी परिवर्तन $(\Delta \mathrm{H})$ एक ही तापमान T पर होता है तो, अभिक्रिया संभव है।

अतः $\Delta \mathrm{G}=-\mathrm{ve}$ होता है,
जबकि $\Delta \mathrm{H}<\mathrm{T} \Delta \mathrm{S}$
6. For which of the following gaseous reactions $K_{p}=K_{c}$?
निम्नलिखित गैसीय अभिक्रियाओं में किस अभिक्रिया में $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$ है ?
(a) $\mathrm{H}_{2}+\mathrm{I}_{2}$
2 Hl
(b) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \quad 2 \mathrm{SO}_{3}$
(c) $\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \quad \mathrm{PCl}_{5}$
(d) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \quad 2 \mathrm{NL}_{3}$

Ans. (a): $\mathrm{H}_{2}+\mathrm{I}_{2} \quad 2 \mathrm{HI}$
इस अभिक्रिया में $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$ होगा।
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
यदि $\Delta \mathrm{n}=0$, तब $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
यदि $\Delta \mathrm{n}>0$, तब $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
यदि $\Delta \mathrm{n}<0$, तब $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
दिये गये अभिक्रिया में
$\mathrm{H}_{2}+\mathrm{I}_{2} \quad 2 \mathrm{HI}$

