Railway Recruitment Board **RRRB TECHNICIAN GRADE-I SIGNAL** Point to Point Theory + MCQ's

Chapterwise Study Material & Question Bank

Chief Editor A. K. Mahajan

Written & Complied by Subject Expert Team

Computer Graphics by Balkrishna Tripathi & Charan Singh

Editorial Office

12, Church Lane Prayagraj-211002 **9415650134**

website : www.yctbooks.com / www.yctfastbook.com / www.yctbooksprime.com © All Rights Reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and E:Book by APP Youth Prime BOOKS In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

	PHYSICS FUNDAMENTALS
	Unit and Measurements 4-14
	Mass, Weight and Density
	Speed and Velocity
	Work, Power and Energy
	Heat and Temperature
	ELECTRICITY AND MAGNETISM
•	Basic Electricity (Electric circuit, Ohm's Law, Electric power & Energy)
	Magnetism and Electromagnetic Induction (Electromagnetic flux, Magnetic field, Faraday's Law of electromagnetic induction, Ampere's Law)
	ELECTRONICS AND MEASUREMENTS
	Basic Electronics Engineering (Semiconductor Physics, p-n junction
	diode and Opto Electronics, LCD LED Panel, BJT, FET, ICs) 217-258
	Electronics Device and Circuits (Diode Circuit, BJT Amplifiers,
	Power & Feedback Amplifiers, Oscillators, OP-AMP, Multivibrator,
	Voltage regulator & Power supply)
	Digital Electronics (Number systems, Boolean Algebra,
	Logic gates, Combinational & Sequential Circuits, ICs Logic
	families, A/D and D/A Converters, Semiconductors Memories)
	Electronic Measurements (Measuring Systems and Principles,
	Range extension method, Bridge measurement, Power and Energy meter,
	Electronic Voltmeters and Digital Voltmeters, CRO, Transducers)
•	Microprocessor (Architecture, Instruction Set and Programming, Interrupts, Interfacing of Memory Devices, 8086 Microprocessor) 400-430 Microcontroller

Syllabus

Questions will be of objective type with multiple choice answers and are likely to cover topics pertaining to the following syllabus

- General Awareness: Knowledge of current affairs, Indian geography, culture and history of India including freedom struggle, Indian Polity and constitution, Indian and Economy, environmental issues concerning India and the World, Sports, General scientific and technological developments, etc.
- General Intelligence and Reasoning: Analogies, Alphabetical and Number series, Coding and Decoding, Mathematical operations, Relationships, Syllogism, Jumbling, Venn Diagram, Data Interpretation and sufficiency, Conclusions and decision making, Similarities and differences, Analytical reasoning, Classification, Directions, Statement Arguments and Assumptions, etc.
- Basics of Computers and Applications: Architecture of Computers; input and output devices: Storage devices, Networking Operating System like Windows, Unix, Linux; MS Office; Various data representation; Internet and Email; Websites & Web Browsers; Computer Virus.
- Mathematics: Number system, Rational and irrational numbers, BODMAS rule, Quadratic Equations, Arithmetic Progression, Similar Triangles, Pythagoras Theorem, Co-ordinate Geometry, Trigonometrical Ratios, Heights and distances, Surface area and Volume; Sets: Set and their representations, Empty set, Finite and Infinite sets, Equal sets, Subsets, Subsets of a set of real numbers, Universal set, Venn diagrams, Union and Intersection of sets, Difference of sets, Complement of a set, Properties of Complement; Statistics: Measures of Dispersion: Range, Mean deviation, variance and standard deviation of ungrouped/grouped data; probability occurrence of events, exhaustive events, mutually exclusive events.

■ Basic Science and Engineering:

Physics' fundamentals- Units, Measurements, Mass, Weight, Density, Work Power, and Energy, Speed and Velocity, heat and Temperature;

Electricity and Magnetism-Electric Charge, Field, and intensity, Electric Potential and Potential Difference, Simple Electric Circuits, Conductors, Non-conductors/Insulators, Ohm's Law and its Limitations, Resistances in Series and Parallel of a Circuit and Specific Resistance, Relation Between Electric Potential, Energy, and Power (Wattage) Ampere's Law, Magnetic Force on Moving Charged Particle and Long Straight Conductors, Electromagnetic Induction, Faraday's Law, and Electromagnetic Flux, Magnetic Field, Magnetic Induction;

Electronics and Measurements-basic Electronics, Digital Electronics, Electronic Devices and Circuits, Microcontroller, Microprocessor, Electronic Measurements, Measuring Systems and Principles, Range Extension methods, Cathode Ray Oscilloscope, LCD LED Panel, Transducers.

Tentative Subject-wise break-up of questions and marks for CBT of Technician Gr-I Signal				
No. of Questions	Marks for Each Section			
10	10			
15	15			
20	20			
20	20			
35	35			
100	100			
	k-up of questions and marks for C No. of Questions 10 15 20 20 35 100			

1. Duration : 90 minutes (with 30 minutes extra time for PwBD candidates using scribe).

2. The Subject-wise distribution give above is merely indicative. The question papers may vary.

Units and Measurements

Physical Quantity-

- A quantity which can be measured directly or indirectly or can be explained and expressed in the form of laws of physics are called physical quantity.
 - A physical quantity is completely represented by its magnitude and unit.
 - The magnitude of physical quantity and unit are inversely proportional to each other. Larger the unit smaller will be the magnitude.

Types of Physical Quantity -

• Ratio (Numerical value only)- When a physical quantity is a ratio of two similar quantities. It has no unit.

Relative Density = $\frac{\text{Density of Object}}{\text{Density of Water}}$

- Scalar- A physical quantity which has magnitude only and do not have any direction.
- Example- Work, Energy, Length, Time.
- Vector- A physical quantity which has magnitude and direction both.
- Example- Displacement, Velocity, Acceleration etc.
- Units- Measurement of any physical quantity involves comparison with a certain basic, arbitrarily chosen, internationally accepted reference standard called unit.

■ System of units-

1

- A system of unit is a complete set of unit. It is used to measure all kinds of fundamental and derived quantities.
- Some system of units are as follows-

2	Units	CGS	MKS	FPS
	Length	Cm	meter	foot
	Mass	Gram	kg	pound
	Time	Second	second	second

Fundamental and Derived Unit-

• Fundamental Unit- The units of those physical quantities which can neither be derived from one another, nor they can be further resolved into more simpler units. Example:- Units of Mass, Length etc.

• **Derived Unit-** Those units of physical quantities which are derived from units of fundamental quantities are called Derived units. Example:- Units of Velocity, Acceleration, Force, Work etc.

🗖 S.I. Unit-

- The S.I. unit is the international system of units. This system contains seven fundamental units and two supplementary fundamental units.
- Fundamental quantities in S.I. System and their units-

(B)	Physical	Name of	Symbol of unit
	Quantity	unit	
	Mass	Kilogram	Kg
	Length	Meter	М
	Time	Second	S
	Temperature	Kelvin	K
	Luminous Intensity	Candela	Cd
	Electric Current	Ampere	А
	Amount of Substance	Mole	Mol

■ Supplementary S.I Unit- (Dimensionless Unit)

Physical Quantity	Name of unit	Symbol of unit
Plane angle	Radian	Rad
Solid angle	Steradian	Sr

Dimension of Physical Quantity-

- The powers to which fundamental quantities must be in order to express the given physical quantity is called its dimension.
- It is used to express derived quantity in terms of fundamental quantities.

For example-	Force = $Mass \times Acceleration$
	$\underline{Mass \times Velocity}$
	- Time
	= Mass \times Length \times Time ⁻²
	$= [MLT^{-2}]$
OT D M	

S.I. Prefixes-

•

 The magnitudes of physical quantities vary over a wide range. The CGPM recommended standard prefixes for magnitude too large or too small to be expressed more compactly for certain powers of 10.

Power of 10	Prefix	Symbol	Power of 10	Prefix	Symbol
10 ¹⁸	exa	Е	10^{-1}	deci	D
10 ¹⁵	peta	Р	10^{-2}	centi	С
10 ¹²	tera	Т	10^{-3}	mili	М
10 ⁹	giga	G	10 ⁻⁶	mirco	μ
10 ⁶	mega	М	10 ⁻⁹	nano	Ν
10 ³	kilo	k	10^{-12}	pico	Р
10 ²	hecto	h	10^{-15}	femto	F
10 ¹	deca	da	10^{-18}	atto	A

Units of Important Physical Quantities-

Physical Quantity	Unit	Physical Quantity	Unit
Angular Acceleration	Rad-s ⁻²	Frequency	Hertz
Moment of inertia	kg-m ²	Resistance	ohm(Ω)
Self inductance	Henry	Surface tension	Newton/m
Magnetic Flux	Weber	Universal Gas Constant	Joule K ⁻¹ mol ⁻¹
Pole Strength	A-m	Dipole-moment	coulomb-meter
Dynamic Viscosity	Pascal-sec or kg/ms	Stefan Constant	Watt $m^{-2} K^{-4}$
Kinematic Viscosity	m ² /s	Permittivity of free space (ε_0)	Coulomb ² /N-m ²
Reactance	$ohms(\Omega)$	Permeability of free space (μ_0)	Weber/A-m
Specific heat	J/kg°C	Planck's constant	Joule-sec
Strength of magnetic field	Tesla	Entropy	J/K
Astronomical distance	Parsec	Angular Speed	Rad/sec

Dimensions of important Physical Quantities -

Physical Quantity	Dimensions	Physical Quantity	Dimensions
Momentum	$M^1L^1T^{-1}$	Capacitance	$M^{-1}L^{-2}T^4 A^2$
Calorie	$M^1L^2T^{-2}$	Modulus of rigidity	$M^{1}L^{-1}T^{-2}$
Latent heat capacity	$M^{0}L^{2}T^{-2}$	Magnetic permeability	$M^{1}L^{1}T^{-2}A^{-2}$
Self inductance	$M^{1}L^{2}T^{-2}A^{-2}$	Solar constant	$M^{1}L^{0}T^{-3}$
Coefficient of thermal conductivity	$M^{1}L^{1}T^{-3}\theta^{-1}$	Magnetic flux	$M^{1}L^{2}T^{-2}A^{-1}$
Power	$M^{1}L^{2}T^{-3}$	Current density	$M^{0}L^{-2}T^{0}A^{1}$
Impulse	$M^1L^1T^{-1}$	Young's Modulus	$M^{1}L^{-1}T^{-2}$
Hole mobility of a semiconductor	$M^{-1}L^0A^1T^2$	Magnetic field intensity	$MT^{-2} A^{-1}$
Bulk modulus of elasticity	$M^{1}L^{-1}T^{-2}$	Magnetic induction	$M^{1}T^{-2}A^{-1}$
Light year	$M^0L^1T^0$	Permittivity	$M^{-1}L^{-3}T^4 A^2$
Thermal resistance	$M^{-1}L^{-2}T^3 \theta$	Electric field	$M^{1}L^{1}T^{-3}A^{-1}$
Coefficient of Viscosity	$M^{1}L^{-1}T^{-1}$	Resistance	$ML^{2}T^{-3}A^{-2}$

Physical quantities which are dimensionless-

Sr. No.	Physical Quantity	Dimensional Formula
1.	Specific gravity	
2.	Strain	
3.	Angle (θ)	
4.	Avogadro's number (N)	
5.	Reynold's number (N _R)	
6.	Refractive Index (µ)	$[\mathbf{M}^0\mathbf{I}\ ^0\mathbf{T}^0]$
7.	Mechanical equivalent of heat (J)	
8.	Dielectric Constant (K) or relative permittivity	
9.	Relative density	
10.	Trigonometric-ratios	
11.	Distance gradient]
12.	Relative permeability	

Physical quantities which have same dimensional formula -

S.No.	Physical Quantity	Dimensional Formula
1.	Speed or Velocity	
2.	Velocity of light in Vacuum (c)	$M^{0}r^{1}r^{-1}$
3.	Distance travelled in n^{th} second (S_n^{th})	MIL I
4.	Relative Velocity	
5.	Frequency (v)	
6.	Angular frequency	$\mathbf{M}^{0}\mathbf{U}^{0}\mathbf{T}^{-1}$
7.	Angular velocity (ω)	IVI L I
8.	Velocity Gradient	

9.	Work	
10.	Moment of force	
11.	Torque	
12.	Internal energy	1 alx 2m-2
13.	Potential energy	M ² L ² L ²
14.	Kinetic energy	
15	Heat energy	
16	Light energy	
17	Coefficient of elasticity	
18	Pressure	
10.	Strass	
20	Voung's Modulus	$M^{1}I^{-1}T^{-2}$
20.	Rulk Modulus	
21.	Modulus of rigidity	
22.	Energy density	
23.	Energy defisity	
24.	Woight	
25.	Thrust	$M^{1}I^{1}T^{-2}$
20	Financial Energy gradient	IVI L I
27.	Tongion	
28.		
29.	Acceleration	0- 1 2-
30.	Acceleration due to gravity	$[M^{\nu}L^{1}T^{-2}]$
31.	Gravitational field intensity	
32.	Plank's Constant (h)	$[M^{1}I^{2}T^{-1}]$
33.	Angular momentum	
34.	Mass	$[M^{1}L^{0}T^{0}]$
35.	Momentum	$[\mathbf{M}^{1}\mathbf{I}^{-1}\mathbf{T}^{-1}]$
36.	Impulse	
37.	Length	
38.	Radius of gyration (K)	$[M^0L^1T^0]$
39.	Wavelength (λ)	
40.	Force constant	
41.	Surface tension	$M^1L^0T^{-2}$
42.	Surface energy	
43.	Area	$M^0L^2T^0$
44.	Volume	$M^0L^3T^0$
45.	Density	$M^{1}L^{-3}T^{0}$
46	Universal gravitational constant (G)	$M^{-1}L^{-3}T^{-2}$
47	Moment of Inertia	$\frac{1}{M^{1}L^{2}T^{0}}$
48	Angular acceleration	$\frac{1}{M^0 I^0 T^{-2}}$
49	Rate of flow	$\frac{1}{M^0 I^3 T^{-1}}$
50	Mass per unit length	$\frac{1}{M^{1}L^{-1}T^{0}}$
50.	Rydherg constant (R)	$\frac{1}{M^0 \Gamma^{-1} T^0}$
52	Coefficient of viscosity (n)	$\frac{1}{M^{1}L^{-1}T^{-1}}$
52.	Kinematic viscosity	$\frac{1}{M^0 \Gamma^2 T^{-1}}$
53.	Surface notential	$\frac{1}{M^0 \Gamma^2 T^{-2}}$
55	Snecific volume	$\frac{1}{M^{-1}I} \frac{3}{3}T^{0}$
55.	Power	$\frac{1 \mathbf{V} \mathbf{I} \cdot \mathbf{L} \cdot \mathbf{I}}{\mathbf{M}^{1} \mathbf{I}^{2} \mathbf{T}^{-3}}$
■ Dime	nsional Analysis and Its Annlications	each of the terms of a dimensional equation on bot
Dimor	nsional analysis helps up in deducing contain	sides should be the same Mathematically [149]
 Dimension relation 	ns among different physical quantities	[RHS]
checki	ng the derivation accuracy and dimensional	@ Fvomnlo
consist	tency or homogeneity of various mathematical	Work dong = force × displacement :
expres	sions.	• work done – force \wedge displacement;
Check	ing dimensional consistency of equations:	$\begin{bmatrix} ML^{T} \end{bmatrix} = \begin{bmatrix} ML^{T} \end{bmatrix} \times \begin{bmatrix} M^{2}L^{T} \end{bmatrix}$
Princip	ole of homogeneity states that dimensions of	$[ML^2I^{-2}] = [ML^2I^{-2}]$

- Checking dimensional consistency of equations:

Units and Measurements

- $S = ut + \frac{1}{2}at^2$; Dimensionally, $[S] = [ut] = [at^2]$ $[M^0LT^0] = [M^0LT^{-1}][M^0L^0T] = [M^0LT^{-2}][M^0L^0T^2]$ $[M^0LT^0] = [M^0LT^0] = [M^0LT^0]$
- To convert a physical quantity from one to another system of units: $Q_1n_2 = Q_2n_1$; Where $Q_1 =$ unit in 1st system, $Q_2 =$ unit in 2nd system and n_1 and n_2 be constant value in 1st and 2nd system.

$$\therefore \quad \mathbf{n}_2 = \frac{\mathbf{Q}_1 \mathbf{n}_1}{\mathbf{Q}_2} \quad \Longrightarrow \mathbf{n}_2 = \mathbf{n}_1 \left[\frac{\mathbf{Q}_1}{\mathbf{Q}_2} \right]$$

Example -

Conversion of SI unit of force from Newton (MKS) into dyne (CGS),

Let $n_2 = x$, $Q_2 = dyne$ (g cm s⁻²), $n_1 = 1$, $Q_1 = N(kg m/s^{-2})$

Applying
$$n_2 = \left\lfloor \frac{Q_1}{Q_2} \right\rfloor n_1$$

 $\therefore \quad x = 1 \left\lfloor \frac{M_1}{M_2} \right\rfloor^a \left\lfloor \frac{L_1}{L_2} \right\rfloor^b \left\lfloor \frac{T_1}{T_2} \right\rfloor^c$ or
 $x = 1 \times \left\lfloor \frac{kg}{g} \right\rfloor^l \left\lfloor \frac{m}{cm} \right\rfloor^l \left\lfloor \frac{s}{s} \right\rfloor^{-2}$
or $x = 1 \times \left\lfloor \frac{1000 \text{ g}}{g} \right\rfloor \times \left\lfloor \frac{100 \text{ cm}}{cm} \right\rfloor \times \left\lfloor \frac{1 \text{ s}}{s} \right\rfloor \implies x = 10^5$
 $\therefore 1 \text{ N} = 10^5 \text{ dynes.}$

• **Deducing relation among the physical quantities:** If we know the dependency of a physical quantity on the other quantities then using dimensional analysis relation between them can be derived.

Example- Time period of simple pendulum depends on mass of bob (m), length (l) of string and acceleration due to gravity (g). Here k is a dimensionless constant. $[M^{0}L^{0}T] = [ML^{0}T^{0}]^{a} [M^{0}LT^{0}]^{b} [M^{0}LT^{-2}]^{c}$ $[M^{0}L^{0}T] = [M^{a}L^{b+c}T^{-2c}]$ Comparing the powers, we get a = 0, b + c = 0 and -2c = 1 \therefore c = $\frac{-1}{2}$ and b = $\frac{1}{2}$ Substituting values of a, b and c in equation (i), $T = k m^0 l^{1/2} g^{-1/2}$ \therefore T = k $\sqrt{\frac{l}{g}}$ (k = a constant cannot be determined using dimensions) Limitations of dimensional analysis: Dimensional method can be used only if the dependency is of multiplication type. The formulae containing exponential, trigonometric and logarithmic function can't be derived using this method. Formulae containing more than one term which are added or

subtracted like $S = ut + \frac{1}{2}at^2$ also can't be derived.

• We cannot determine the value of constants in a relation.

- It gives no information whether a physical quantity is a scalar or a vector.
- In mechanics, the physical quantities depends on more than three quantities cannot be derived by dimensional method as there will be less number (= 3) of equations than the unknowns (> 3). However still we can check the correctness of equation dimensionally.
- Physical quantities having identical dimensions may be of entirely different in nature.

Application of Dimensional Analysis -

- •. To convert physical quantity from one system of units to another.
 - To check correctness of a given physical relation.
 - To derive a relationship between different physical quantities.
 - Trigonometric functions sin θ, cos θ, tan θ etc and their arrangements θ are dimensionless.
 Dimension of differential
 - Dimension of coefficients $\left[\frac{d^n y}{dx^n}\right] = \left[\frac{y}{x^n}\right]$
 - Dimension of integrals $[\int ydx] = [yx]$ we can not add or subtract two physical quantities of different dimensions.
 - Independent quantity may be taken as fundamental quantities in a new system of units.
 - Measure of a physical quantity = Numerical value of the physical quantity × Size of the unit i.e Q = n × u Thus, the numerical value (n) is inversely proportional to the size of the unit (u).
 - $n \propto \frac{1}{n}$ or nu = constant.

Some important units:-

1 Fermi = 10^{-15} m $1 \text{ X- ray Unit} = 10^{-13} \text{m}$ 1 Astronomical unit = 1.49×10^{11} m (average distance b/w sun and earth) 1 Light Year = 9.46×10^{15} m. 1 Parsec = 3.08×10^{16} m = 3.26 light year $1A^0 = 10^{-10}m$ 1 Micron = 10^{-6} m 1 Mili micron = 10^{-9} m 1 Joule = 10^7 erg Values of some important physical constants-Acceleration due to gravity (g) = 9.8 m/s^2 Standard atmospheric pressure = 76 cm Hg = $1.01 \times 10^5 \text{ N/m}^2$ Density of mercury = 13.59×10^3 kgm⁻³ Gravitational constant (G) = $6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ Ideal gas = 8.3145 J. mole⁻¹K⁻¹ Speed of light (c) = 3×10^8 m/s

Plank's Constant =
$$6.626 \times 10^{-34}$$
JS
Avogadro number = 6.023×10^{23} mol⁻¹

	I 🗕	Those physical quantities which have only magnitude
EVAM DOINTS	-	and no direction are called Scalar quantity
EAAW PUINIS)		and no unection are called - Scalar quantity
		The unit of density in MKS system is
■ System of units are - F.P.S, C.G.S and M.K.S		- Kilogram/cubic meter (kg/m [°])
■ SI unit is taken from - M.K.S system		How many miles are in 1 km - 0.622 miles
 SI system was developed in	-	How many millimeters are in one kilometer -10^6 mm
■ SI system was developed in - 1971		How many liters in one cubic foot 28 316 liter (I)
■ No. of basic unit is - Seven		How many fact are in (not are 10 (0 for t (f))
In system that uses the meter for length, the kilogram		How many feet are in 6 meters - 19.68 feet (it)
for quantity, the second for time, Kelvin for		One hectare is equal to - 2.47 acres
temperature, ampere for electric current. The candela		How many watts are in 5 (five) horse power (hp)
for luminous intensity and the mole for the amount of		- 3728.5 watt
a substance is called - SI system	_	How many joules are in one K W H -36×10^5 Joules
- No. of supplementary unit is Two		How many jodies are in one mater 20.37 inches
$\blacksquare \text{ No. of supplementary unit is} - 1 \text{ wo}$		How many mones are in one meter - 59.57 mones
■ Plane angle (radian), Solid angle (steradian) are		Unit of mass in SI/MKS system is - kilogram (kg)
- Supplementary unit		Weight of one kilogram amount is -9.8Newton (N)
■ SI unit of temperature is - Kelvin (K)		How many liters are in one gallon - 3.785 liter
■ The SI unit of energy is - Joule	-	How many square feet will be in 3 square meters
The SI unit of torque is Newton_meter (Nm)	_	32 3 square foot
The SI unit of forgueness - Newton-Ineter (1411)	_	- 52.5 square rect
■ The SI unit of frequency is - Hertz		Y and is one linch is -0.0278 Yard
The SI unit of electric current is - Ampere		How many hectares are in one acre4047 hectares
■ The SI unit of the physical quantity "Luminous		Value of 2.5 gallons in liters will be - 9.464
intensity" is - Candela (cd)		The physical quantities having magnitude and
• The SI unit of the physical quantity "magnetic flux		direction are called - Vector quantity
intensity" is - Tesla (T)	_	0.4047 bectare 4047 square meter and 4840 square
The SL unit of the physical quantity "magnetic flux"is	-	vard is equal to
■ The ST unit of the physical quantity magnetic flux is		- One acte
- Weber (wb)		One angstrom is equal to - 10 meter
• The SI unit of the physical quantity "magnetic field		How many gram are in an ounce - 28.3 gram
intensity" is - Amperes per meter		One parsec is equal to - 3.26 light years
■ The SI unit for heat capacity will be - Joule/°C		How many liters are in one barrel of oil - 159 liter
■ The SI unit of luminous flux is - Lumen	-	How many liters will be in 5 gallons - 18.927 liters
The SL unit of "force counle" is		How many kilograms in one tonne $-10^3 kg$
Nowton motor (Nm)		One here now (IID) is equal to 746 wetter
- The CL unit of launface tonsion in Neuton (1911)	-	Vile noise power (HF) is equal to - 740 watts
The SI unit of surface tension is - Newton/meter		value of 1000 watts in norse power (HP) will be
The SI unit of viscosity is - Poiseuille (PI)		- 1.359 watts
■ The density of water in MKS system is - 10 [°] kg/m [°]		9.45×10^{12} km is equal to - One light year
■ Light year is the unit of - Distance		One kg of weight is in Newton - 9.81 N
■ Kilowatt hour is the unit of - Energy		For 10^{12} prefix unit is used - Tera
■ Tonne is the unit of - Weight	_	5280 feet 1.609 km and 1760 yard is equal to
 Unit of angular velocity is Badian/second 	-	1 mile
 Angetrom is the unit of 	_	- 1 milt
The device device in MKC sectors is	-	How many minimeter are in 24 menes - 009.00 min
■ The derived unit of mass in MKS system is		How many joules are in one calorie - 4.18 Joules
- Kilogram		One milligram (mg) is equal to kilogram -10^{-6} kg
In MKS systems the unit of force is		The value of 2 square miles converted into square
kg-m		km. will be - 5.175 square km
$-\frac{3}{100^2}$ (Newton)		One pound contains - 453.592 gram
- In EDC materia the unit of maintain Down d	-	The value of 5 meters in inches will be
■ In FPS system, the unit of weight is - Pound	_	- 196 85 inches
■ The largest unit to measure the distance is - Parsec	_	The value of 5 square kilometer converted to square
■ The unit of solid angle is - Steradian	-	The value of 5 square knometer converted to square
■ The unit that is used in all system - second		- 1.952 square mile
■ The CGS unit of length is - Centimeter		The value of 95°C is in Fahrenheit - 203°F
The unit of force in CGS system is _ Dyne		One pico-second is equal to -10^{-12} second
The unit of force in COS system is $-Dync$		10 micro meter is in meter -10^{-5} meter
■ The unit of gravitational constant (G) is - Nm /kg	-	One micron is equal to millimeter - 0.001 mm
■ "Calorie" is the unit of measurement of - Heat		The value of 10 inches in mm will be -254 mm
■ The unit of density in CGS system is - gram/cm ³		Calorias in ana Jaula ara
■ Curie is the unit of - Radio-activity		Calories in one joure are -0.24 calorie
R P M of a rotating fly wheel is measured by		$-27^{\circ}C$
= 1x.1.1vi. of a forating fry wheel is incastice by		The unit of young's modulus of elasticity in the SI
- Stroboscope		system is - Newton/meter ²
■ Kilowatt-hour is unit of - Electrical energy		Momentum, mass and velocity are related to
■ The unit of Plank's constant is - J-S		- Momentum = mass × velocity
The unit of physical quantity "Jerk" is		Joules and 'electron volt' are the unit of - Energy
- Meter per second cube (m/sec ³)		The dimensions of energy and work are $-IML^2T^{-2}I$
Units and Massuraments	<u>0</u>	
Units and Ivreasurements a	0	YCI

measuring instrument are less than be affected - It will increase d error of a measuring instrument is - Accuracy $\propto \frac{1}{\text{error}}$ s measured by - Ammeter y the earth to revolve around the sun - 10 ⁷ second in micron is - 10 ⁻⁴ micron e division of the venier scale than the ision of the main scale is - little less meters (mm) are in one micron - $\frac{1}{1000}$ mm ading marked on the scale is called Actual Value n instrument which caste difference able values -Transfer persistence ere more in the measurement sub- -Ductility decreases suring instruments are -less sensitive ring instruments are -less durability mical measuring instrument is
nical measuring instrument is -Less sensitivity, more stability i impact on stability when the beech increases -Decreases between the upper limit and lower surement is called -Tolerance e auspiciousness, when the accuracy instrument increases -Decreases asurement, there is a reasons for - Indirect and direct both neasuring system is -Pointer function, recording
FIONS
ntial Energy- The energy stored in position above the earth's surface is l potential energy. It is scalar is electrical energy per unit time. It is following is not a vector quantity? (b) Velocity ment (d) Acceleration I Physics & Maths 21 .01.2019 Shift I Quantity - A physical quantity which ide and direction. Displacement, on momentum force weight are
s f <u>1</u> u u or

q = charge

d = distance.

Electric Current - The rate of flow of charge is called electric current. It is a scalar quantity.

Units and Measurements

examples of vector Quantity.

Scalar quantity- A scalar quantity only has a

magnitude. Some common examples of scalar quantity are mass, speed, volume, temperature, density etc.

3. kgms ⁻¹ is the SI unit of ——	Where,
(a) Momentum (b) Pressure	The SI units of Gravitational force = Newton (N)
(c) Force (d) Velocity	The SI unit of Distance = Meter (m)
RRB ALP CBT II Physics & Maths 21 .01.2019 Shift I	The SI units of Masses $(M, m) = kg$
Ans. (a) : Momentum - It is the product of the mass and	Nm^2
velocity of an object whose change with respect to time	Therefore, The SI unit of G = $\text{Nm}^2\text{kg}^{-2}$ or $\frac{\text{Nm}^2}{\text{K}^2}$
gives force.	Kg
$P = m \times v$	7. The dimensional formula of speed
Where $P = momentum$	(a) $[MLT^{-1}]$ (b) $[M^0LT^{-1}]$
m = mass of object	(c) $[ML^0T^{-1}]$ (d) $[MLT^2]$
v = velocity	RRB ALP CBT II Physics & Maths 21 .01.2019 Shift III
• The S.I. unit of momentum is kg-m/sec. and	RRB ALP CBT II Physics & Maths 22 .01.2019 Shift I
dimension is [ML1].	Ans. (b) : We know that,
4. Which of the following has no unit	$S_{\text{read}}\left(u = d\right)$
(a) Pressure (b) Density	Speed $\begin{pmatrix} v = -\\ t \end{pmatrix}$
(c) Distance (d) Relative Density	[I]
RRB ALP CBT II Physics & Maths 21.01.2019 Shift I	$V = \frac{\lfloor L \rfloor}{L \rfloor}$
Ans. (d): Relative density - It is defined as the ratio of density of a substance with respect to the density of	[T]
water It is denoted by R D	The dimensional Formula of speed = $[M^0LT^{-1}]$
Density of substance	• $M = Mass$
$R.D = \frac{Density of substance}{Density of substance}$	• $L = Length$
Density of water	• $T = Time$
• Relative density is a dimensionless quantity.	9 Light year is the unit of
Pressure - The force applied perpendicular to the	6. Light year is the unit of (a) Longth (b) Time
surface area of an object is known as pressure. It is	(a) Length (b) The (c) Area (d) Area
denoted by 'P'.	(C) MIASS (U) AICA DDP ALD CDT II Drysies & Mathe 21, 01 2010 Shift III
$\mathbf{P} = \frac{\mathbf{F}}{\mathbf{F}}$	Ang (a) + The light year is a unit of length. It is used to
A	Ans. (a): The light year is a unit of length. It is used to express Astronomical distances
Where, $F =$ Force applied by the body (N)	• It is equal to about 0.46 trillion kilometers
A= Total area of the object (m^2)	$(9.46 \times 10^{12} \text{ km}) \text{ or } 5.88 \text{ trillion miles} (5.88 \times 10^{12} \text{ miles})$
• The S.I unit of pressure is Pascal (Pa) or N/m^2 .	$(7.40\times10^{-10} \text{ km})$ of $5.66 \text{ transitions} (5.66\times10^{-10} \text{ mmcs})$.
Density - It is defined as mass per unit volume. It is	9. Light year is the unit of a quantity whose unit
denoted by ρ . The unit of Density is kg/m ² .	(a) Second (b) Kg
$\rho = \frac{Mass(m)}{mass(m)}$	(a) Second (b) Kg
P Volume(v)	RRB ALP CRT II Physics & Maths 22, 01 2019 Shift I
Distance - The complete path travelled by an object.	Ans (d) · Light year is the unit of a quantity whose
The unit of Distance is meter (m).	unit can also be Angstrom
5. Which among the following is a derived unit ?	The distance travelled by light in one year is called one
(a) Length (b) Density	light - year. It is the unit of astronomical distance
(c) Time (d) Mass	The unit of length which is equal to 10^{-10} meters is
RR ALP CRT II Physics & Maths 21 01 2010 Shift II	called 1 Angstrom. It is denoted by A°
Ang (b) - Derived Unit - The combination of two here	10 The distance severed by a postiale in time 14
Ans. (b) : Derived Unit :- The combination of two base	10. The distance covered by a particle in time t
	is given by $a = at + bt^2$ where $ a $ and $ b $ are two constants
• Density is derived unit because it is a combination of	s = at + bt where a and b are two constants.
two basic units mass and volume and it is given by $1 \neq 3$	The dimensional formula of b is:
kg/m [°] .	(a) $\left[M^0 L^1 T^{-2} \right]$ (b) $\left[M^0 L^2 T^{-1} \right]$
6. S.I. Unit of universal gravitational constant is	(c) $\begin{bmatrix} M^0 I^1 T^{-1} \end{bmatrix}$ (d) $\begin{bmatrix} M^0 I^2 T^{-2} \end{bmatrix}$
(a) Nkg^2/m^2 (b) kg^2/Nm^2	
(c) Nm^2/kg^2 (d) N^2m^2/kg^2	RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II
RRB ALP CBT II Physics & Maths 21 .01.2019 Shift III	Ans. (a) : Given : $S = at + bt^2$ (i)
Ans. (c) : As per universal law of gravitations,	From the principle of dimensional homogeneity, the
GMm	L.H.S of the equation dimensionally equal to the R.H.S
$F = \frac{1}{d^2}$	of the equation.
	So, the dimension of (s), (at) and $(bt)^2$ is same.
$G = \frac{Fd^2}{dr^2}$	Dimensional formula of distance $(s) = [L]$
Mm	

For the first term	Surface tension is the attract	ction force four	nd which is
$\therefore [L] = [a][T]$	responsible for pulling surface molecules in the rest of		
	the liquid.		1
$\begin{bmatrix} a \end{bmatrix} = \frac{L^{-1}}{[T]} = \begin{bmatrix} LT^{-1} \end{bmatrix}$	14. Which one of the fol is a scalar quantity?	lowing physica	li quantities
[¹] For the second term	(a) Dipole moment		
For the second term \cdot [I] = [b] [T ²]	(b) Angular momentu	ım	
	(c) Torque		
$[b] = \frac{[L]}{[L^2]} = [LT^{-2}]$	(d) Electric current		
$\begin{bmatrix} T^2 \end{bmatrix}$	RRB ALP CBT II Physics	& Maths 22 .01.	2019 Shift III
Hence, the dimensional formula of 'b' is $\left[M^{\circ} L^{1} T^{-2} \right]$	Ans. (d) :		
	• A scalar quantity is defined	ned as the physi	cal quantity
11. which of the following is dimensionless:	that has only magnitude	e.g. Mass, elec	etric current,
(c) Mass (d) Area	• A vector quantity is defi	ned as the physi	ical quantity
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II	that has magnitude as we	ell as direction of	e.g. Angular
Ans. (b) : Angle is defined as the ratio of the length of	momentum, torque,	force, a	acceleration,
arc to the radius.	displacement, dipole mot	ment etc.	
$\operatorname{Angle}(0) = \operatorname{length} \operatorname{of} \operatorname{arc}(\ell)$	15. Which of the following	ng is not the SI	base unit?
Alight (0) – $\frac{1}{radius(r)}$	(a) Coulomb	(b) Metre	
	(c) Kilogram	(d) Ampere	
$\theta = \frac{\left[\frac{1}{1} \frac{1}{1} \frac{1}{1} \right]}{\left[\frac{1}{1} \frac{1}{1} \frac{1}{1} \right]} = 1$	RRB ALP CB1 II Physics	& Maths 22 .01.	2019 Shift III
	Ans. (a) : Fundamental unit	/SI base unit:-	is called a
Hence, an angle is a dimensionless quantity.	• The ST unit of a fundar	nemai quantity	is called a
12. The dimensional formula of force :	• There are 7 fundamental	ntal quantities	and their
(a) $\left[ML^{-3}T^{2} \right]$ (b) $\left[MLT^{-2} \right]$	fundamental units are g	iven below	and then
(c) $\begin{bmatrix} MI^{-2}T^{-2} \end{bmatrix}$ (d) $\begin{bmatrix} MI^{-1}T^{-1} \end{bmatrix}$	Fundame	ntal Quantities	
		-	
	Quantities	S.I. bas	e unit
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II	Quantities Mass	S.I. bas Kilogra	e unit m (kg)
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass × Acceleration (i)	Quantities Mass Length	S.I. bas Kilogra Meter (1	m (kg) M)
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass ×Acceleration(i) ∴ Acceleration = Velocity/time	Quantities Mass Length Time	S.I. bas Kilogra Meter (Second	e unit m (kg) M) (s)
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass ×Acceleration(i) ∴ Acceleration = Velocity/time distance / time	Quantities Mass Length Time Temperature	S.I. bas Kilogra Meter (Second Kelvin	e unit m (kg) M) (s) (K)
$\frac{\mathbf{RRB \ ALP \ CBT \ II \ Physics \& \ Maths 22 .01.2019 \ Shift \ II}}{\mathbf{Ans. (b) : Dimensional \ Formula \ of \ Force}$ Force = Mass × Acceleration(i) $\therefore \ Acceleration = \ Velocity/time$ $= \frac{\text{distance / time}}{\text{time}}$	Quantities Mass Length Time Temperature Electric current	S.I. bas Kilogra Meter (Second Kelvin Ampere	e unit m (kg) M) (s) (K) e (A)
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass × Acceleration(i)	Quantities Mass Length Time Temperature Electric current Luminous	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela	e unit m (kg) M) (s) (K) e (A) a (cd)
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass × Acceleration(i)	QuantitiesMassLengthTimeTemperatureElectric currentLuminousintensity	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela	e unit m (kg) M) (s) (K) e (A) a (cd)
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass ×Acceleration(i) \therefore Acceleration = Velocity/time $= \frac{\text{distance / time}}{\text{time}}$ $= \frac{L/T}{T} = [LT^{-2}]$ $\therefore \text{Mass} = [M]$	QuantitiesMassLengthTimeTemperatureElectric currentLuminousintensityAmount of	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela Mole (M	e unit m (kg) M) (s) (K) e (A) a (cd) Mol)
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass × Acceleration(i) Acceleration = Velocity/time a distance / time a dime <	QuantitiesMassLengthTimeTemperatureElectric currentLuminousintensityAmount ofsubstance	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela Mole (N	e unit m (kg) M) (s) (K) e (A) a (cd) Mol)
RRB ALP CBT II Physics & Maths 22.01.2019 Shift II RRB ALP CBT II Physics & Maths 22.01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass × Acceleration(i) \therefore Acceleration = Velocity/time $= \frac{\text{distance / time}}{\text{time}}$ $= \frac{\text{L/T}}{\text{T}} = [\text{LT}^{-2}]$ \therefore Mass = [M] Put both the values in eq (i) Forma = IMI \times [L T ⁻²] = IMI T ⁻²]	QuantitiesMassLengthTimeTemperatureElectric currentLuminousintensityAmount ofsubstance• We can say that the comparison of	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela Mole (N	e unit m (kg) M) (s) (K) c (A) a (cd) Mol) he SI base
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II RRB ALP CBT II Physics & Maths 22 .01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass × Acceleration(i) Acceleration = Velocity/time a distance / time	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the count. So option (a) is contained.	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela Mole (N pulomb is not t	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift IIAns. (b) : Dimensional Formula of ForceForce = Mass × Acceleration(i) \therefore Acceleration = Velocity/time $= \frac{\text{distance / time}}{\text{time}}$ $= \frac{\text{L/T}}{\text{T}} = [\text{LT}^{-2}]$ \therefore Mass = [M]Put both the values in eq (i)Force = [M] × [LT^{-2}] = [MLT^{-2}]13. Which one of the following physical quantities	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the counit. So option (a) is explained 16. Which of the following	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela Mole (N oulomb is not t prrect. ng is NOT a bas (b) Mala	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit?
RRB ALP CBT II Physics & Maths 22.01.2019 Shift II ARB ALP CBT II Physics & Maths 22.01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass ×Acceleration(i) ∴ Acceleration = Velocity/time $= \frac{\text{distance / time}}{\text{time}}$ $= \frac{\text{L/T}}{\text{T}} = [\text{LT}^{-2}]$ \therefore Mass = [M] Put both the values in eq (i) Force = [M] × [LT^{-2}] = [MLT^{-2}] 13. Which one of the following physical quantities represent stress? (a) Force/length (b) Impulse/volume	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the counit. So option (a) is count. 16. Which of the following (a) Radian (c) Ampere	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela Mole (N bulomb is not t brrect. In is NOT a bas (b) Mole (d) Candela	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit?
RRB ALP CBT II Physics & Maths 22.01.2019 Shift IIARB ALP CBT II Physics & Maths 22.01.2019 Shift IIAns. (b) : Dimensional Formula of ForceForce = Mass × Acceleration(i) \therefore Acceleration = Velocity/time $= \frac{distance / time}{time}$ $= \frac{L/T}{T} = [LT^{-2}]$ \therefore Mass = [M]Put both the values in eq (i)Force = [M] × [LT^{-2}] = [MLT^{-2}]13. Which one of the following physical quantities represent stress?(a) Force/length(b) Impulse/volume(c) Restoring force/area(d) Energy/area	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the counit. So option (a) is co 16. Which of the followin (a) Radian (c) Ampere RRB ALP	S.I. bas Kilogra Meter (1 Second Kelvin (1 Ampere Candela Mole (N oulomb is not t orrect. ng is NOT a bas (b) Mole (d) Candel & Tech. 23.01.	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift IIARB ALP CBT II Physics & Maths 22 .01.2019 Shift IIAns. (b) : Dimensional Formula of ForceForce = Mass × Acceleration(i) Acceleration = Velocity/time $= \frac{distance / time}{time}$ $= \frac{distance / time}{time}$ $= \frac{L/T}{T} = [LT^{-2}]$ Mass = [M]Put both the values in eq (i)Force = [M] × [LT^{-2}] = [MLT^{-2}]13. Which one of the following physical quantities represent stress?(a) Force/length(b) Impulse/volume(c) Restoring force/area(d) Energy/areaRRB ALP CBT II Physics & Maths 22 .01.2019 Shift III	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance We can say that the counit. So option (a) is constant (a) and (b) and (c) a	S.I. bas Kilogra Meter () Second Kelvin Ampere Candela Mole (N oulomb is not t orrect. ng is NOT a bas (b) Mole (d) Candel & Tech. 23.01. antities in SI s	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I vstem and
RRB ALP CBT II Physics & Maths 22.01.2019 Shift IIARB ALP CBT II Physics & Maths 22.01.2019 Shift IIAns. (b) : Dimensional Formula of ForceForce = Mass × Acceleration(i) \therefore Acceleration = Velocity/time $= \frac{distance / time}{time}$ $= \frac{distance / time}{time}$ $= \frac{L/T}{T} = [LT^{-2}]$ \therefore Mass = [M]Put both the values in eq (i)Force = [M] × [LT^{-2}] = [MLT^{-2}]13. Which one of the following physical quantities represent stress?(a) Force/length(b) Impulse/volume(c) Restoring force/area(d) Energy/areaRRB ALP CBT II Physics & Maths 22.01.2019 Shift IIIAns. (c) : Stress a physical quantity that defines force	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the counit. So option (a) is count. So option (b) is count. So option (c)	S.I. bas Kilogra Meter (Second Kelvin (Ampere Candela Mole (N oulomb is not t brrect. Ig is NOT a bas (d) Candel & Tech. 23.01. antities in SI s	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and
RRB ALP CBT II Physics & Maths 22.01.2019 Shift IIARB ALP CBT II Physics & Maths 22.01.2019 Shift IIAns. (b) : Dimensional Formula of ForceForce = Mass ×Acceleration(i) \therefore Acceleration = Velocity/time $= \frac{distance / time}{time}$ $= \frac{L/T}{T} = [LT^{-2}]$ \therefore Mass = [M]Put both the values in eq (i)Force = [M] × [LT^{-2}] = [MLT^{-2}]13. Which one of the following physical quantities represent stress? (a) Force/length (b) Impulse/volume (c) Restoring force/area (d) Energy/areaRRB ALP CBT II Physics & Maths 22.01.2019 Shift IIIAns. (c) : Stress a physical quantity that defines force per unit area applied to a material. It is denoted by σ .	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the count. So option (a) is contained (b) is contained (c). Ampere RRB ALP Ans: (a) Fundamental quather the image. Physical Quantity	S.I. bas Kilogra Meter (Second Kelvin (Ampere Candela Mole (N bulomb is not t brrect. ng is NOT a bas (b) Mole (d) Candel & Tech. 23.01. antities in SI s	e unit m (kg) M) (s) (K) c (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and Symbol of
RRB ALP CBT II Physics & Maths 22.01.2019 Shift IIAns. (b) : Dimensional Formula of ForceForce = Mass ×Acceleration(i) \therefore Acceleration = Velocity/time $= \frac{\text{distance / time}}{\text{time}}$ $= \frac{\text{L/T}}{\text{T}} = [\text{LT}^{-2}]$ \therefore Mass = [M]Put both the values in eq (i)Force = [M] × [LT^{-2}] = [MLT^{-2}] 13. Which one of the following physical quantities represent stress? (a) Force/length (b) Impulse/volume (c) Restoring force/area (d) Energy/areaRRB ALP CBT II Physics & Maths 22 .01.2019 Shift IIIAns. (c) : Stress a physical quantity that defines force per unit area applied to a material. It is denoted by σ .	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the count. So option (a) is contained on the following (a) Radian (c) Ampere RRB ALP Ans: (a) Fundamental quather the indication of the indicatio	S.I. bas Kilogra Meter () Second Kelvin () Ampere Candela Mole (N oulomb is not t orrect. ng is NOT a bas (b) Mole (d) Candel & Tech. 23.01. antities in SI s Name of Unit	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and Symbol of Unit
RRB ALP CBT II Physics & Maths 22.01.2019 Shift II ARB ALP CBT II Physics & Maths 22.01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass × Acceleration(i) ∴ Acceleration = Velocity/time = $\frac{distance / time}{time}$ = $\frac{L/T}{T} = [LT^{-2}]$ ∴ Mass = [M] Put both the values in eq (i) Force = [M] × [LT^{-2}] = [MLT^{-2}] 13. Which one of the following physical quantities represent stress? (a) Force/length (b) Impulse/volume (c) Restoring force/area (d) Energy/area RRB ALP CBT II Physics & Maths 22.01.2019 Shift III Ans. (c) : Stress a physical quantity that defines force per unit area applied to a material. It is denoted by σ. Stress = Force Force Force	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance We can say that the counit. So option (a) is constant (a) readian (c) Ampere RRB ALP Ans: (a) Fundamental quantity Mass	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela Mole (N oulomb is not t orrect. Ig is NOT a bas (b) Mole (d) Candel & Tech. 23.01. antities in SI s Name of Unit Kilogram	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and Symbol of Unit kg
RRB ALP CBT II Physics & Maths 22.01.2019 Shift II Anse ALP CBT II Physics & Maths 22.01.2019 Shift II Anse ALP CBT II Physics & Maths 22.01.2019 Shift II Anse ALP CBT II Physics & Maths 22.01.2019 Shift II Anse ALP CBT II Physics & Maths 22.01.2019 Shift II Anse Acceleration(i) Acceleration = Velocity/time adistance / time	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance We can say that the counit. So option (a) is contained (a) is contained (b) is contained (c) Ampere RRB ALP Ans: (a) Fundamental quantity Mass Length	S.I. bas Kilogra Meter (Second Kelvin (Ampere Candela Mole (N oulomb is not t orrect. Ig is NOT a bas (d) Candel & Tech. 23.01. antities in SI s Name of Unit Kilogram Meter	e unit m (kg) M) (s) (K) c (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and Symbol of Unit kg m
RRB ALP CBT II Physics & Maths 22.01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass ×Acceleration(i) ∴ Acceleration = Velocity/time = $\frac{distance / time}{time}$ = $\frac{distance / time}{time}$ = $\frac{L/T}{T} = [LT^{-2}]$ ∴ Mass = [M] Put both the values in eq (i) Force = [M] × [LT^{-2}] = [MLT^{-2}] 13. Which one of the following physical quantities represent stress? (a) Force/length (b) Impulse/volume (c) Restoring force/area (d) Energy/area RRB ALP CBT II Physics & Maths 22.01.2019 Shift III Ans. (c) : Stress a physical quantity that defines force per unit area applied to a material. It is denoted by σ . Stress = Force Gross - sectional area $\sigma = \frac{F}{A}$	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the count. So option (a) is contained (b) is contained (c). Ampere 16. Which of the following (a) Radian (c) Ampere RRB ALP Ans: (a) Fundamental quantity Mass Length Time	S.I. bas Kilogra Meter (1 Second Kelvin (1 Ampere Candela Mole (N oulomb is not t orrect. ng is NOT a bas (b) Mole (d) Candel & Tech. 23.01. antities in SI s Name of Unit Kilogram Meter Second	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and Symbol of Unit kg m S
RRB ALP CBT II Physics & Maths 22.01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass ×Acceleration(i) ∴ Acceleration = Velocity/time = distance / time time = = L/T T = [LT ⁻²] ∴ Mass = [M] Put both the values in eq (i) Force = [M] × [LT ⁻²] = [MLT ⁻²] 13. Which one of the following physical quantities represent stress? (a) Force/length (b) Impulse/volume (c) Restoring force/area (d) Energy/area RRB ALP CBT II Physics & Maths 22.01.2019 Shift III Ans. (c) : Stress a physical quantity that defines force per unit area applied to a material. It is denoted by σ. Stress = Force cross - sectional area $\sigma = \frac{F}{A}$ The S.I. Unit of stress is Newton/meter ² or Pascals (Pa)	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the count. So option (a) is control (a) is control (b) is control (c) and	S.I. bas Kilogra Meter (Second Kelvin Ampere Candela Mole (N oulomb is not t orrect. ng is NOT a bas (b) Mole (d) Candel & Tech. 23.01. antities in SI s Name of Unit Kilogram Meter Second kelvin	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and Symbol of Unit kg m S K
RRB ALP CBT II Physics & Maths 22.01.2019 Shift IIAns. (b) : Dimensional Formula of ForceForce = Mass ×Acceleration(i) \therefore Acceleration = Velocity/time $= \frac{\text{distance / time}}{\text{time}}$ $= \frac{\text{L/T}}{\text{T}} = [\text{LT}^{-2}]$ \therefore Mass = [M]Put both the values in eq (i)Force = [M] × [LT^{-2}] = [MLT^{-2}] 13. Which one of the following physical quantities represent stress?(a) Force/length(b) Impulse/volume (c) Restoring force/area(d) Energy/areaRRB ALP CBT II Physics & Maths 22.01.2019 Shift IIIAns. (c) : Stress a physical quantity that defines force per unit area applied to a material. It is denoted by σ .Stress = $\frac{Force}{cross - sectional area}$ $\sigma = \frac{F}{A}$ The S.I. Unit of stress is Newton/meter ² or Pascals (Pa). Force	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the counit. So option (a) is count. So option (a)	S.I. bas Kilogra Meter (Second Kelvin (Ampere Candela Mole (N oulomb is not t orrect. Ig is NOT a bas (b) Mole (d) Candel & Tech. 23.01. antities in SI s Name of Unit Kilogram Meter Second kelvin Candela	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and Symbol of Unit kg m S K Cd
RRB ALP CBT II Physics & Maths 22.01.2019 Shift II Ans. (b) : Dimensional Formula of Force Force = Mass × Acceleration(i) ∴ Acceleration = Velocity/time $= \frac{distance / time}{time}$ $= \frac{distance / time}{T} = [LT^{-2}]$ ∴ Mass = [M] Put both the values in eq (i) Force = [M] × [LT^{-2}] = [MLT^{-2}] Image: Second stress for the following physical quantities represent stress? (a) Force/length (b) Impulse/volume (c) Restoring force/area (d) Energy/area RRB ALP CBT II Physics & Maths 22.01.2019 Shift III Ans. (c) : Stress a physical quantity that defines force per unit area applied to a material. It is denoted by σ. Stress = Force cross - sectional area $\sigma = \frac{F}{A}$ The S.I. Unit of stress is Newton/meter ² or Pascals (Pa). $\frac{Force}{langth} = Surface tension $	Quantities Mass Length Time Temperature Electric current Luminous intensity Amount of substance • We can say that the count. So option (a) is contained (a) is contained (b) is contained (c) Ampere RRB ALP Ans: (a) Fundamental quantity Mass Length Time Temperature Luminous intensity	S.I. bas Kilogra Meter (Second Kelvin (Ampere Candela Mole (N oulomb is not t orrect. Ig is NOT a bas (d) Candel (d) Candel & Tech. 23.01. antities in SI s Name of Unit Kilogram Meter Second kelvin Candela Ampere	e unit m (kg) M) (s) (K) e (A) a (cd) Mol) he SI base se unit? la 2019 Shift-I ystem and Symbol of Unit kg m S K Cd A

17. Farad per meter is the unit of——.(a) Permeability	24. Heat supplied to a system is measured in (a) joules (b) amperes
(b) Electric conductance	(c) kilowatts (d) degrees kelvin
(c) Permittivity	RRB ALP & Tech. 22.01.2019 Shift-I
(d) Watt per steradian	Ans : (a) Heat supplied to a system is measured in
RRB ALP & Tech. 23.01.2019 Shift-	Joule or Calorie.
Ans : (c) Farad per meter is the unit of permittivity.	1 Calorie = 4.18 Joule
• Electric conductance \rightarrow Siemen (s)	25. Which meter is used for the measurement of
• Permeability \rightarrow Henry/ meter	heat?
18 Honry nor motor is the unit of	(a) Energy meter (b) Calorimeter
(a) permeability	(c) Ammeter (d) Wattmeter
(a) permeability (b) electric conductance	RRB ALP & Tech. 21.01.2019 Shift-I
(c) watt per steradian	Ans : (b): Instrument Uses
(d) permittivity	• Calorimeter 10 measure the thermal
RRB ALP & Tech 23 01 2019 Shift-I	Change To measure current in the
Ans : (b) Henry per meter is the unit of permittivity	circuit
Ans. (b) frem y per inter is the unit of permittivity.	• Wattmeter To measure and estimate the
19. Which of the following is NOT a derived unit?	electric power
$ \begin{array}{c} (a) \text{Mol} \\ (b) \text{Volt} \\ (c) \text{Padian} \\ (d) \text{Luman} \\ \end{array} $	• Energy To measure the total power
(C) Radian (C) Edition DDR ALD & Toob 23.01 2010 Shift I	26. When you convert one inch from British to SI
Ang (a) Derived unity These units of physical	unit, it becomes cm.
Ans: (a) Derived unit. Those units of physical quantities which are derived from units of fundamental	(a) 25.4 (b) 12
quantities are called derived units ex –	(c) 2.54 (d) 0.254
Unit of mass length etc	RRB ALP & Tech. 21.01.2019 Shift-I
Mol is a fundamental unit	Ans : (c) : One inch from British to SI unit is equal to
20 Which of the following is a base unit?	the 2.54 cm.
(a) candela (b) hertz	27. The SI unit for electrical resistivity is :
(c) radian (d) ohm	(a) Tesla (b) Ohm meter
RRB ALP & Tech. 08.02.2019 Shift-	(c) Ampere (d) Volt/meter
Ans : (a) : Candela is base unit Hence option (a) is	KKB ALP & Tech. 21.01.2019 Shift-I
correct.	Ans: (b) SI unit of electrical resistivity is onm meter.
21. Katal is the unit of	• Electric field strength Tasle or Ampero/mater
(a) catalytic activity (b) stress	Floatrie field strength Volt/mater
(c) capacitance (d) entropy	• Electric field strength – volt/ineter
RRB ALP & Tech. 08.02.2019 Shift-	(a) Coulomb (b) Tesla
Ans : (a) : Katal is the unit of catalytic activity. It is	(a) Coulomb (b) Testa (c) Volt (d) Ampere
equivalent to 1 mole/second.	RRB ALP & Tech. 22.01.2019 Shift-III
22. Which of the following option does not have SI unit	$\frac{1}{2}$ Ans: (c) SI Unit
(a) Frequency	Electric charge – Coulomb
(b) Amount of substance	Electric field – Tesla
(c) Electric current	Potential difference – Volt
(d) Luminous Intensity	Electric current – Ampere
RRB ALP & Tech. 23.01.2019 Shift-II	29. Generally, the capacity of a battery is
Ans: (a) Frequency does not have S.I base unit. The SI	expressed in -
time period	(a) Tesla (b) Kilowatt hour
23 One mile is annrovimately equivalent to	(c) Ampere (d) Ampere hour
kilometers	- RRB ALP & Tech. 22.01.2019 Shift-III
(a) 0.8 (b) 1.2	Ans : (d) An ampere hour is a unit in which capacity of
(c) 1.4 (d) 1.6	battery can be expressed.
RRB ALP & Tech. 22.01.2019 Shift-	I Ampere – nour is equal to 5000 Coulombs. It is a
Ans : (d) 1 mile = 1.69344 Kilometers	storage device, such as a rechargeable battery or deep
Hence, option (d) is correct.	cycle battery.
· · · · · · · · · · · · · · · · · · ·	۱۱ ۰ -

30. What is the S.I. unit of transferred heat energy?	37. Which of the following is a vector quantity-
(a) Kelvin (b) Ampere	(a) momentum
(c) Kilowatt (d) Joule	(b) pressure
RRB ALP & Tech. 22.01.2019 Shift-III	(c) energy
Ans : (d) Physical quantity SI unit	(d) work
Temperature Kelvin (K)	RRB Patna Technical Eng., 27.07.2008
Electric current Ampere (A)	Ans. (a) : Momentum is a vector quantity.
Power Killowatt (kW)	38. 'Parsec' is the unit measurement of
Heat energy Joule.	(a) Density of stars
31. Which of the following is a unit of momentum?	(b) Astronomical distance
(a) Nm (b) $kg m s^{-1}$	(c) Brightness of heavenly bodies
(c) kg m s ⁻² (d) kg m ⁻²	(d) Orbital velocity of giant stars
RRB JE Bhopal Paper-I (Shift-II), 28.08.2015	RRB Chandigarh Section Eng. (Civil), 26.02.2012
Ans. (b) : Physical quantity Unit	Ans. (b) : Parsec is the unit of astronomical distance.
Work done N-m	1 astronomical = 9.46×10^{15} meter
Linear momentum Kg-ms ²	30 One atmospheric pressure is equal to har:
Force Kg-ms ⁻	(a) 1.01325 (b) 10.3
32. SI unit of force is-	$\begin{array}{c} (a) & 1.01525 \\ (b) & 101325 \\ (c) & 760 \\ (d) & 101325 \\ \end{array}$
(a) kg-ms ⁻² (b) kg-ms ⁻¹	DMRC JE Mech 18 02 2017
(c) $kg-m^2s^{-2}$ (d) $kg-m^3s^{-1}$	Ans: (a) 1 atm pressure = 1.01325 har
RRB Chennai Section Engineer, 12.02.2012	= 10.3 meter (height of water)
Ans. (a) : Force = mass \times acceleration	= 760 mm (height of water)
Force = $kg \times m - s^{-2}$	= 101 325 (kilo pascal)
SI Unit of force is equal to $kg - m - s^{-2}$	10 The specific gravity of liquids is usually
33. C.G.S. unit of force is-	measured by means of a:
(a) Newton (b) kg	(a) Hygrometer
(c) Dyne (d) None of these	(b) Thermometer
DMRC Junior Engineer (Electronics), 03.08.2014	(c) Piezometer
Ans. (c) : Unit of force –	(d) Hydrometer
M. K. S kg-m/sec ²	DMRC JE Mech. 07.09.2014
S.I Newton	Ans : (d) The specific gravity of liquids usually
C.G.S Dyne	measured by means of hydrometer.
34. How much watt in one horse power-	Hygrometer – To measure amount of humidity
(a) 1000 (b) 750	Piezometer – To measure underground water
(c) $/46$ (d) $/48$	pressure
RRB Trivandrum (Tech.), 09.11.1997	Thermometer – To measure temperature of matter
Ans. (c) : 1 horse power = 746 watt	41. What does the voltmeter measure?
35. Kilowatt hour is the unit of-	(a) Strength of current
(a) mass	(b) Potential difference between two points
(b) time	(c) Resistance
(c) Electrical energy	(d) Energy consumed
(d) Electrical power	RRB Ajmer (Technical), 25.01.1998
RRB Secunderabad Technical-III (Electrical), 11.12.2005	Ans. (b):Voltmeter is used to measure electric potential
Ans. (c) : Kilowatt hour is a unit of electrical energy.	difference between two point in an electric circuit.
36. eV is the unit of -	42. A barometer is used to measure :
(a) energy	(a) Very low pressure
(b) Charge of electron	(b) Very High pressure
(c) Potential difference	(c) Pressure difference between two points
(d) Power	(d) Atmospheric pressure
KKB Kolkata Technical-III, 20.08.2006	RRB JE Bhopal Paper-I (Shift-II), 28.08.2015
Ans. (a) : eV is a unit of energy.	Ans. (d) : A barometer is used to measure atmospheric
$1 \text{ eV} = 1.602 \times 10^{-17} \text{ Joule}$	pressure.

43. Which one of the following instruments will be used for measuring electric current?	49. The length of one division of the vernier scale is equal to the length of one division of the main
(a) Voltmeter	scale
(b) Ammeter	(a) less than (b) greater than
(c) Ohmmeter	(c) equal (d) (a) and (b)
(d) Wavemeter	RRB Asst. Loco Pilot (Chandigarh)-2003
RRB Bilaspur JE (red) , 14.12.2014	Ans. (a) : The length of one division of the vernier
Ans. (b) : Ammeter is used to measure electric current.	scale is slightly less than the length of one division of
44. The order of magnitude of 0.00542 is –	the main scale.
(a) 10^{-5} (b) 10^{-4}	50. If the observed measurement of an object is
(c) 10^{-3} (d) 10^{-2}	2.85 cm. When object is measured with vernier
RRB Ajmer (Technical), 01.03.1998	calipers having a positive error of 0.05 cm then
Ans. (d) : If given no is greater than 3.16 then given no	actual measurement of the object will be
is multiplied by 10° i.e	(a) 2.90 cm
5.42 > 3.16	(b) $[2.85 + (0.05/2)]$ cm
$\Rightarrow 5.42 \times 10^{-2} \times 10^{-1}$	$\begin{array}{c} (c) & 2.80 \text{ cm} \\ (d) & \text{None of these} \end{array}$
$\Rightarrow 5.42 \times 10$	(d) None of these BRB Asst Loca Pilot (Carakhnur)-2003
If given no is less than 2.16 then the given value is	Ans (a): Actual measurement of the object = observed
in given no is less than 5.10 then the given value is unchanged	value + error value
45 The order of magnitude of 1.6×10^6 is-	Note:- decrease on positive value and increase on
(a) 10^7 (b) 10^8	negative value
(c) 10^{0} (d) 10^{6}	Actual value $= 2.85 - 0.05 = 2.80$
RRB Trivandrum (Technical), 11.04.1999	51. The top scale of screw gauge is marked with 50
Ans. (d) : The order of magnitude of 1.6×10^6 is 10^6 .	division, if the pitch of the screw is 1 mm then
46. In one measurement, the diameter is 1.308 cm.	the least count of the screw gauge.
the significant no is.	(a) 0.50 mm (b) 0.002 mm
(a) 2 (b) 4	(c) 0.02 mm (d) 0.05 mm
(c) 5 (d) 0	RRB Asst. Loco Pilot (Mumbai)-2005
RRB Trivandrum (Technical), 29.06.1999	Ans (c): Least count = $\frac{\text{Pitch}}{1} = \frac{1}{1}$
Ans. (b) : The significant no of 1.308 is 4.	no. of divisions 50
47. What is the order of magnitude of time taken	L. $C = 0.02 \text{ mm}$
by the earth to revolve around the sun.	52. The no of significant figure in 0.00237×10 ⁵ is.
(a) 10^5 second	(a) 1 (b) 2 (c) 3 (d) 4
(b) 10^7 second	RRB Asst. Loco Pilot (Ranchi)-2005
(c) 10° second	Ans. (c) : Standard from $= 2.37 \times 10^2$
(d) None of the above	Significant no = 3
RRB Kolkata (Technical), 29.08.1999	Order of magnitude $= 10^2$
Ans. (b) : The time taken by the earth to revolve the sun is-	53. 1 micron is equal to
$= 365 \times 24 \times 60 \times 60$	(a) 1/10 mm (b) 1/100 mm
$= 3.1536 \times 10^{\circ}$ second	(c) 1/1000 mm (d) 1/10000 mm
	RRB Asst. Loco Pilot (Kolkata)-2006
48. The value of 1 A° is. (a) 10^{-10} Micron	Ans. (c) : 1 micron = 10^{-6} m = 10^{-3} mm
(a) 10 Micron	1
(b) 10^{-4} Micron	$=\frac{1000}{1000}$ mm
(c) 10° Micron	54. One nanometer is
(d) 10 ⁻² Micron	(a) 10^{-6} cm (b) 10^{-7} cm
RRB Bangalore Technical (Engineering), 22.04.2007	(c) 10^{-8} cm (d) 10^{-9} cm
Ans. (c) : $1 \text{ A}^{\circ} = 10^{-10}$	RRB Asst. Loco Pilot (Kolkata)-2006
$= 10^{-4} \text{ micron}$	Ans. (b) : 1 nanometer = 1.0×10^{-9} m = 10^{-7} cm
$= 10^{\circ}$ micron	

■ Mass:

The mass (m) of a body of matter is quantitative measure of its inertia i.e., its resistance to a change in the state of rest or motion of the body, when a force is applied. The mass of a body is the amount of substance in the

body.

- SI unit of mass is the kilogram (kg).
- It is a scalar quantity.
- The greater the mass of a body, the smaller the rate of change in motion.
- Difference between Mass and Weight

■ Weight:

- The weight of an object is defined as the force of gravity on the object and may be calculated as the mass times the acceleration of gravity, w = mg. Since the weight is a force, its SI unit is the Newton.
- For an object in free fall, so that gravity is the only force acting on it, Then the expression for weight follows from Newton's second law.

 $W = F = M \times g$ Where W = weight

M= mass

F = net external force

g = acceleration due to gravity

			Ν	lass		Weight		
	Definition	T	he amount o	f substance in	a The gravita	The gravitational pull acting on a body		
	Dependent location	on N T	lo he mass is sa	me on the Moo	Yes on The weight	t is different on th	e Moon from Earth	
		as	s on Earth		· · · · · · · · · · · · · · · · ·			
	Measured using	g A	beam balanc	e	A spring b	A spring balance		
_	Unit	K	llogram		Newton			
•	 Force - A push or pull that one object exerts on another 				$r = 1 \text{kg m/s}^2$			
•	One dyne is the acceleration of 1	$at muc cm/s^2 ir$	h force whic	h produces an	1N = 1000 $1N = 10^{5}$	$gm \times 100 \text{ cm/s}^2$		
	$1 \text{ dvne} = 1 \text{ gm} \times$	1 cm/s^2	= 1 gm.cms ⁻²	5	IIN = IU	ayne. Sam Can Iamantal	C	
	One Newton is	that mu	ch force which	ch produces an	• I nere are i	our fundamental	forces in nature-	
	acceleration of 1	m/s^2 in	a mass of 1 kg	g.	1. Gravitation	al torce		
	Using				2. Electromag	netic force		
	F	= ma	1 1 2		3. Strong nucl	ear force		
	IN	= 1 kg	< 1m/s ²		4. Weak force			
I	nteraction	Particl	e Range	Relative	Characteris	Particle	Role in universe	
		affecte	d	Strength	-tics time	exchange		
S fo	trong Nuclear	Quarks	$\sim 10^{-15}$	m 1	10^{-23} sec	Gluons	Holds quark together to form nucleon.	
		Hadron	IS			Mesons	Hold nucleons together to form atomic nuclei.	
E	lectromagnetic	Charge particle	d ∞	10 ⁻²	10^{-20} sec	Photons	Determine structure of atoms, solids and liquid is important factor in astronomical universe.	
V fo	Veak nuclear orce	Quark Lepton	& ~10 ⁻¹⁶	m 10 ⁻¹³	10 ⁻¹⁰ sec	Intermediate boson	Mediate transformations of quarks & leptons helps determine composition of atomic nuclei	
G	Bravitational	All	x	10 ⁻³⁹	10 ⁻¹⁶ sec	Gravitons → Not experim- entally detected	Assemble matter into planet, stars and galaxies	

Types of forces on macroscopic objects –

■ Field Force or Range Forces -

These are the forces in which contact between two objects is not necessary.

- Ex. (i) Gravitational force between two bodies. (ii) Electrostatic force between two charges.
- Contact force -Contact forces exist only as long as the objects are touching each other.
 (i) Normal force
 (ii) Frictional force.
- Attachment to another body -Tension (T) in a string and spring force (F = kx) comes in this group.
- Friction- If there is relative motion or tendency of relative motion between two bodies an opposing force parallel to surface comes into play preventing the relative motion. This is called friction.
- The frictional force on each body is in a direction opposite to its motion relative to the other body i.e frictional always oppose the relative motion.
- Classification of friction-
- 1. Static friction- The force of friction that comes into play between the surface of two bodies before the body actually starts moving is called static friction. As long as there is no relative motion net force is direction of expected motion is zero, so the object remains in equilibrium, the maximum value of static frictional force is called limiting, frictional force.
- 2. Kinetic friction- the force of friction between two surfaces when one surface is motion over the other surface is called kinetic friction. Force of kinetic friction is slightly less than force of limiting friction. Kinetic friction does not depend upon relative velocity.
- Kinetic friction is of two types
 (a) Sliding friction
 (b) Rolling friction
- Co-efficient of friction-
- co-efficient of static friction.

$$\mu_{\rm S} = \frac{F_{\rm L}}{R}$$

Where, F = Limiting force of friction R = Normal relation μ_{s} = Co-efficient of static friction

$$\mu_{\rm K} = \frac{F_{\rm K}}{R}$$

- μ_S can be greater than μ_K as well.
- Force of friction does not depend upon shape, size or area of contact, as long as the normal reaction remains the same. It is so, because force of friction is given by

$F = \mu R$

Where $\mu = a$ constant.

 Angle of friction (λ)- The angle which is resultant of normal reaction and limiting friction makes with direction of normal reaction is called angle of friction.

 $\mu_{\rm S} = \tan \lambda = \frac{F_{\rm L}}{R}$

$$\lambda$$

object F_{L}

- Law of friction- There are four laws of friction.
- When two bodies are in contact, then the friction force (F) is directly proportion to normal reaction (normal force) R between them i.e. $F \propto R$.
- The direction of friction force is always opposite to the direction of motion of one body over the other.
- The friction force does not depend upon the area of contact unless the normal reaction remains same.
- The friction force depends on material and nature of two surfaces in contact.
- Newton's Law of Motion –
- First law (Galileo's law of inertia)
- Second law (Law of force)
- Third law (Law of action and reaction)
- (i) Newton's First law (Galileo's law of inertia)
- If $\vec{F}_{external} = 0$ and $\vec{V} = 0$ i.e body is in rest then it always in rest.
- Ex. A person who is standing freely in bus is thrown backward when the bus starts suddenly.
- (ii) Newton's Second law (Law of force) -
- The rate of change of linear momentum w.r.t. time is equal to applied force and change in momentum takes place in the direction of applied force.

$$F = \frac{\Delta I}{\Delta I}$$

Δv

If
$$P = f(t)$$
 then,

$$dt$$

 $\Delta P P_c - P_c mv - mu$

If
$$\frac{\Delta t}{\Delta t} = \frac{\mathbf{1}_{f} - \mathbf{1}_{i}}{\Delta t} = \frac{\mathbf{mv} - \mathbf{mu}}{\Delta t} = \mathbf{m} \frac{\Delta v}{\Delta t} = \mathbf{ma}$$

dP

•
$$\vec{F} = m\vec{a}$$

• Unit -
$$1 \text{ Kg-m/s}^2 = 1 \text{ Newton (In M.K.S.)}$$

1 Newton = $10^5 \text{ Dyne (In C.G.S.)}$

• For Horizontal motion -F = ma

Where, m = Inertial mass

 For vertical motion -W = mg Where, m = Gravitational mass.

The force (F) acting on a moving object is the product of the mass (m) and acceleration (a)

$$F = ma$$
(i)
$$F = ma$$
(i)
$$F = ma$$
(ii)
$$F_2 \xleftarrow{m} F_1^{a}$$
(iii)
$$F_2 \xleftarrow{m} F_1^{a}$$

$$F_1 - F_2 = ma$$
(iii)
$$F_2 \xleftarrow{\theta} F_1 \cos \theta$$

$$F_1 \cos \theta - F_2 = ma$$

Momentum (P) -

- It is the product of the mass and velocity of a body i.e $\vec{P} = m\vec{v}$
- Change in linear momentum (ΔP) - $\Delta P = P_f - P_i$ Where, $P_f = Final$ momentum, $P_i = Initial$ momentum.

 $\Delta P = mv - mu$ $\Delta P = m(v - u)$

$$\Delta P = m (v - u)$$

- S.I. unit is Kg-m-s⁻¹ or N-sec
- Dimension of linear momentum = $[MLT^{-1}]$.
- Impulse -

Area

• If a force is applied on the body for very small time interval then-

 $I = \vec{F} \Delta t$ $I = \frac{\Delta P}{\Delta t} \times \Delta t$

$$\Delta t$$

$$\vec{I} = \Delta \vec{P}$$
Impulse = changing in momentum.
bounded by F - T Graph -

(a) If constant force acting on the body-

Area = length × breadth = $F \times \Delta t$

(b) If direction of force on the body is reversed. $I = \Delta P = |A_1| - |A_2|$

(c) If variable force is acting on the body i.e F = f(t)

(ii)
$$\xrightarrow{m}_{u}$$
 wall $F = \frac{2mu}{\Delta t}$
(iii) $\xrightarrow{\theta}_{\theta}$ $F = \frac{\Delta p}{\Delta t} = \frac{2mu\cos\theta}{\Delta t}$

■ Newton's Third Law (Law of action and reaction)

 According to this law, for every action there is always equal and opposite reaction i.e the forces of action and reaction are always equal and opposite.

Example -

- When you walk you interact with the floor, you push against the floor and the floor pushes against you. The pair of forces occurs at the same time.
- Likewise, the tires of car push against the road while the road pushes back on the tires the tires and the road simultaneously push against each car.

Normal force will be perpendicular to the surface of contact.

Gravitation - It is the force of attraction between any bodies.

Newton's Law of Gravitation-

• Force of attraction between two masses m₁ and m₂ separated by a distance r -

$$F = \frac{Gm_1m_2}{r^2}$$

Where, $G =$

G = Universal gravitational constant

$$G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$$

 $F_{-1} = -F_{-1}$

Kepler's Law's of Planetary Motion – Laws of orbit -

• Every planet revolves around the earth in an elliptical orbit and sun is at its focus.

Law of area -

• The radius vector drawn from the sun to a planet sweeps out equal areas in equal intervals of time i.e that areal velocity of the planet around the sun is constant.

Mass, Weight & Density

Laws of period -

• The square of the time period of revolution of a planet around the sun is directly proportional to the cube of semi-major axis of its elliptical orbit.

$$T^2 \propto a^3$$
 or $\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{a_1}{a_2}\right)^3$

- Acceleration due to gravity –
- The uniform acceleration produced in a freely falling object due to the gravitational pull of the earth.

$$g = \frac{GM}{R^2} = \frac{4}{3} (\pi \rho GR)$$

• For same material on two planet -

$$g \propto R \ , \qquad \frac{g_1}{g_2} \!=\! \frac{R_1}{R_2} \label{eq:g_lambda_states}$$

Where, ρ = density of earth, M = mass of earth and R = radius of earth

$$G_e =$$
Where,

$$M_e = 6 \times 10^{24} \text{ kg}$$

$$R_e = 6.4 \times 10^6 \text{ m or } 6400$$
km
$$earth$$

□ Acceleration due to gravity at moon surface –

$$g_{moon} = \frac{GM_m}{R_m^2}, \quad g_{moon} = \frac{g_{earth}}{6}$$

Where,
$$M_m = 7.34 \times 10^{22} \text{ kg}$$
$$R_m = 1.74 \times 10^6 \text{ m o}$$

- Variation of gravity –
- (i) Due to top shape of earth-

or 1737.4 km

(ii) Due to height from earth surface -

$$g_{h} = \frac{g}{\left(1 + \frac{h}{R_{e}}\right)^{2}}$$

• The value of 'g' decrease with height. It varies inversely as the square of the distance from the center of the earth.

If $h = R_e$, $g' = \frac{g}{4}$ If $h \to \infty$, g' = 0Decrease in the value of g with height is $g' - g_h = \frac{2hg}{R_e}$ Fractional decrease in the value of $g = \frac{g' - g_h}{g} = \frac{2h}{R_e}$

(iv) Rotation of earth about its own axis-If ω is the angular velocity of rotation of earth about its own axis then acceleration due to gravity at a place having latitude λ is given by - g' = g - R $\omega^2 \cos^2 \lambda$.

- At poles λ = 90° and g' = g. Therefore, there is no effect of rotation of earth about its own axis at poles.
- At equator $\lambda = 0^{\circ}$ and g' = g - R ω^2 . Therefore value of g is minimum at equator.
- If earth stops its rotation about its own axis, then g will remain unchanged at poles but increase by $R\omega^2$ at equator.

Gravitational field –

- The space around a body in which its gravitational pull works, is called gravitational field.
- The gravitational force acting per unit mass at any point in gravitational field is called intensity of gravitational field at that point.
- It is denoted by E.

ity

- (iv) Potential due to uniform solid sphere -Case- 3 - Condition for black hole of any planet -Outside the Surface, Escape velocity of the $r > R, V = -\frac{GM}{M}$ ≥light velocity (3×10^8) planet = $\sqrt{\frac{2 \text{ GM}}{R}}$ On the Surface, r = RCase-4 $V_{\text{surface}} = -\frac{GM}{R}$ Inside the Surface, If projection velocity (V_p) of a body from earth-. V surface is more than escape velocity (V_e) then to r = Rdetermine the velocity of that body in space -0 $V = -\frac{GM}{2R} \left| 3 - \left(\frac{r}{R}\right)^2 \right| V_{cen}$ $V_s = \sqrt{V_p^2 - V_e^2}$ -GM/R Some important escape velocity -Heavenly body **Escape Velocity** $_{\text{tre}} = \frac{-3}{2} \frac{\text{GN}}{\text{R}}$ - 3GM Moon 2.3 Km/sec 2R Mercury 4.28 Km/sec between Gravitational Field Relation and Earth 11.2 Km/sec Potential -Jupiter 60 Km/sec dV = -E drSun 618 Km/sec $\mathbf{E} = \mathbf{E}_{i}\mathbf{\hat{i}} + \mathbf{E}_{i}\mathbf{\hat{j}} + \mathbf{E}_{k}\mathbf{\hat{k}}$ Where, 2×10^5 Km/sec Neutron star $dr = dx\hat{i} + dy\hat{j} + dz\hat{k}$ Relation between escape velocity and orbital velocity $dV = -E_y dx - E_y dy - E_z dz$ $V_e = \sqrt{2}V_o$ ■ Motion of Satellite – $\mathbf{E}_{\mathbf{x}} = \frac{-\delta \mathbf{v}}{\delta \mathbf{x}}, \ \mathbf{E}_{\mathbf{y}} = \frac{-\delta \mathbf{v}}{\delta \mathbf{v}}, \ \mathbf{E}_{\mathbf{z}} = \frac{-\delta \mathbf{v}}{\delta \mathbf{z}},$ • Orbital velocity $V_o = \sqrt{\frac{GM}{r}}$ Orbital Velocity -Orbital velocity of satellite is the minimum velocity Time period T = $\frac{2\pi}{\sqrt{GM}}r^{3/2}$ required to put the satellite into a given orbit around earth. Kinetic energy $K = \frac{GMm}{2\pi}$ $V_o = \sqrt{\frac{GM}{r}} = R\sqrt{\frac{g}{R+h}}$ Where, M = mass of the planet Potential energy $U = -\frac{GMm}{r}$ R = radius of the planeth = height of the satellite from planets surface.Total mechanical energy $E = -\frac{GMm}{2\pi}$ If satellite revolving near the earth's surface then r =• $(R + h) \approx 7.92$ Km/s.
- If V is the speed of satellite in its orbit and V_0 is the required orbital velocity.
- > If $V < V_0$, then satellite will move on a parabolic path and satellite will fall back to earth.
- > If $V = V_0$, the satellite will revolve in circular path/orbit around earth.
- If $V_0 < V < V_e$, then satellite will remove around earth in elliptical orbit.

■ Escape Velocity -

Escape velocity of earth is the minimum velocity with which a body has to be projected vertically upwards from the earth surface, so that it just crosses the earth's gravitational field and never returns.

Case-1

Escape velocity does not depend upon the mass, shape and size of the body as well as direction of projection of body.

$$V_{e} = \sqrt{\frac{2GM}{R}} = \sqrt{2gR} \ , \ V_{e} \propto m^{o}$$

Case-2 Escape velocity in terms of density of that planet -

$$\rho = \frac{M}{V}, \qquad V_e = R \sqrt{\frac{8}{3} \pi G \rho}$$

Mass, Weight & Density

Effective weight in a satellite, W = 0 and satellite • behaves like a free fall body. Geostationary or Parking Satellites –

satellite.

Near the surface of earth,

A satellite which appears to be at a fixed position at a definite height to an observer on earth is called geostationary or parking satellite. They rotate from west to east.

 $r \approx R$ and $V_o = \sqrt{\frac{GM}{R}} = \sqrt{Rg} = \frac{V_e}{\sqrt{2}} = 7.9 Kms^{-1}$

Time period of such satellite would be

 $T = \frac{2\pi}{\sqrt{GM}} R^{\frac{3}{2}} = 2\pi \sqrt{\frac{R}{g}} = 84.6 min$

Binding energy B.E = $+\frac{GMm}{2\pi}$

This is the maximum speed of any earth's satellite.

This is the minimum time period of any earth's

Height from earth's surface = 36000 Km

Angular momentum of satellite, $L = \sqrt{m^2 GMr}$

- These satellite are used in communication purpose.
- INSAT 2B and INSAT 2C are geostationary satellite of India.

Polar Satellites –

- These are satellites which revolve in the polar orbits | around earth.
- Height form earth's surface ≈ 880 km

- These satellite revolve around the earth in polar orbits.
- These satellites are used in forecasting weather studying the upper region of the atmosphere in mapping etc.
- PSLV series satellites are polar satellites of India.

•		
2	U	At the centre of earth, a body has centre of mass, but no centre of gravity.
	O	The centre of mass and centre of gravity of body coincide if gravitational field is uniform.
	O	We does not experience gravitational force in daily life due to objects of same size as value of G is very small.
	O	Moon travelers tie heavy weight at there back before landing on moon due to smaller value of g at moon.
	U	Space rockets are usually launched in equatorial line from west to east because g is minimum at equator and earth rotates from west to east about its axis.
	O	Angular momentum is gravitational field is conserved because gravitational force is central force.
	0	Kepler's second law or constancy of areal velocity is a consequence of conservation of angular momentum.
	0	The energy required by satellite to leave its orbit around the earth (planet) and escape to infinity is called binding energy of satellite.
- D		

The density of any material is defined as its mass per unit volume. If a body of mass M occupies volume V,

then its density is.-
$$\rho = \frac{M}{V}$$

- Density is positive scalar quantity.
- As liquids are incompressible, their density remains constant at all pressures.
- Density of a gas varies largely with pressure.

Example- water = 1.0×10^3 kg-m⁻³, Mercury = 13.6×10^3 $kg-m^{-3}$, Air = 1.29 $kg-m^{-3}$

Relative density/ Specific Gravity-

Relative density of a substance is the ratio of its • density to the density of water at 4 °C

$$R.D = \frac{\text{Density of sustance}}{\text{Density of water at } 4^{\circ}\text{C}}$$

Water has highest density at $4^{\circ}C = 1g \text{ cm}^3 = 10^3 \text{kg/m}^3$

Relative density is a unit less quantity.

4

$$(R.D)_{Hg} = \frac{13.6 \times 10^3 \text{ kg/m}^3}{10^3 \text{ kg/m}^3} = 13.6$$

Buoyancy-

The up-thrust force experienced by a body when partly or wholly immersed in a fluid is called upthrust or buoyant force .The phenomena responsible for this force is called buoyancy

Archimedes Principle -

Archimedes Principle states that when a body is partially or wholly immersed in a fluid, it experiences an upward thrust equal to the weight of the fluid displaced by it and its up-thrust acts through the center of gravity of the displaced fluid.

Up-thrust or buoyant force = weight of liquid displaced.

Apparent weight of immersed body -Apparent weight = Actual weight – Buoyant force

$$W_{app} = W\left(1 - \frac{\rho}{\sigma}\right)$$

Where, $W = V \sigma g$ = weight of the body, σ = density of the body, $\rho = \text{density of liquid}$

V = volume of liquid displaced.

EXAM POINTS

- Three liquids whose densities are d, 2d and 3d respectively are mixed in equal volumes, then the density of the mixture will be 2d
- To find the relative density and specific gravity of liquids and the relative density of solids. It is used

- Two pieces of metal immersed in water exert equal buoyant force, then
 - Both pieces have the same volume
- Form of hydrometer is - Lactometer
- The ratio of mass and volume is - Density
- The value of relative density of a substance in different measurement method is - Same
- Part of unit volume of a substance is called Density

Density ·

⁻ Hydrometer

- The instrument used to obtain the specific gravity of a substance is - Nicholson Hydrometer
- The specific gravity of water at 50°C will be
 - Less than one
- In CGS system, the unit of density is - gram/cm[°]
- The relative density of alcohol is - 0.8
- The instrument used to measure the humidity in the atmosphere is called - Hygrometer
- Beaufort scale is used to measure - Wind speed
- Eudiometer measures - Volume of gas
- When ice floats on top of water, then the part of it that remains outside the water is - 0.1 part
- In which sport players must have knowledge of Pascal's law - Scuba diving
- A sudden fall in the reading of the barometer means - Storm
- The mass of the body at the center of the earth is

- Zero

- Density of solid metals on heating - Decreases
- In general, the density of a liquid on increasing the temperature - Decreases
- Which have higher density in the same amount of viscous (thick) liquid and non-viscous liquids
 - Viscous liquid
- A piece of iron floats in mercury and sinks in water - Density of mercury is greater than because the density of water
- When a solid object is completely immersed in a liquid, it feels. The upward force of an abject depends
 - Density of solid
- The theory which explains the buoyant force experienced by a body while it is immersed in a liquid, was proposed by - Archimedes
- A bottle of soda lime is held by the neck and rapidly rotated in a vertical circle near which part of the bottle will the bubbles collect - Near the neck
- The floating of clouds in the atmosphere is due to
 - Low density of cloud
- When an air bubble rises from the bottom of a lake to the upper surface, then its size will - Increase
- If the mass of the Earth remains the same and radius decreases by 1% then, the value of 'g' at the surface of the Earth is - Increase by 2%
- A polythene balloon is filled with hydrogen gas then released from the surface of the Earth. As the balloon rises to an altitude up in the atmosphere then size of - Increase balloon will
- What will remain unchanged when the quantity of the - Density object changes
- Ink starts leaking out of the pen while traveling in an aeroplane due to - Lack of air pressure
- An iron nail sinks in water but it floats in mercury due to - Density of iron is more than that of water
- Why do the pendulum clocks go slow in summer
- Length of pendulum increases due to which the time period increases and pendulum takes more time to complete one oscillation.
- A boat will submerged when it displaces water equal to its own - Weight
- An astronaut can Jump higher on the moon than on Earth because - Gravitational force on the moon
 - surface is very small as compared to the Earth surface

- The tendency of a liquid drop to contract and occupy minimum volume is due to - surface tension
- The amount of buoyancy obtained by a solid partially or fully immersed in a liquid depends on

- The amount of liquid displaced by the solid. If the volume of a bubble rising from the bottom of a

- lake increases, then the pressure exerted on that bubble will - Decreases
- Escape velocity from a planet of mass M and radius R $\sqrt{\frac{2 \,\mathrm{GM}}{\mathrm{R}}}$

will be

Geotropism is

- Response to gravity or the pull of the Earth Who is the inventor of the laws of gravity - Newton
- If the speed of rotation of the Earth increases, then the weight of the object lying on its surface will

- Decrease

- An object is moved from the equator towards the poles then its weight - Increases
- 'Hydraulic brakes' and 'Hydraulic lift' are devices in which fluid are used for transmitting - Pressure

Relation between g and G is

- $-g = \frac{GM}{R^2}$ Value of gravitational constant at different places on the surface of the earth -Same
- Acceleration due to gravity is different at different places on the surface of the earth and it is smaller at the equator than at poles because

-g is inversely proportional to the radius.

- When an object place at height h from the surface of earth then value of g is - Decreases
- When an object placed at depth 'd' from the surface of earth then value of g is - Decreases
- Ratio between the escape velocity and orbital **√2:1** velocity is
- According to the third law of Kepler's, the time period of revolution of a planet around the sun is
 - An artificial satellite revolving around the earth does not fall down because of the attraction of the earth-

Its curve generates acceleration

for motion on the earth.

If the earth losses its gravity, then for body

- Weight becomes zero while

 Acceleration due to gravity, from the earth surface at **n**2

height his	gR ⁻
licight if is	$\frac{1}{(\mathbf{R}+\mathbf{h})^2}$

If two men talk on the surface of the moon, then

-Cannot hear each other voices because

- there is no medium (i.e. air).
- A storm is predicted when the pressure of the - Suddenly decreases. atmosphere
- Eggs sink in normal water but floats in concentrated solution of salt because

-The density of solution of salt is

greater than the density of egg.

Bernoulli theorem is based on the principle of

- Conservation of energy

An iron needle sinks in water but a ship floats. It is - Archimedes based on the principle of

mass are not zero.

 $-T^2 \propto a^3$

YCT

Ans. (a) : Given that,	Put the value of Area of wire A and B
Mass(m) = 0.05 kg	Fl
Initial speed $(u) = 90m/sec$	<u>π</u> , 2
30	$\gamma \frac{\pi}{4} (2d)^2$
Travelling distance (s) = 30 cm = $\frac{100}{100}$ m	So, $\frac{(\Delta \ell)_A}{(\Delta \ell)} = \frac{4}{F\ell}$
Finally the hullet comes to rest after travelling some	$(\Delta \ell)_{\rm B} = \frac{\Gamma \cdot \ell}{-}$
distance i e Final velocity $(v) = 0$	$\gamma \frac{\pi}{d} d^2$
From 3 rd equation of motion :	. 4
$v^2 - u^2 = 2as$	ratio = $\frac{(\Delta \ell)_{\rm A}}{1} = \frac{1}{2}$
Put the value in above equation	$(\Delta \ell)_{\rm B}$ 4
$2 \times 2 \times 30$	12. Moment of inertia of a thin circular ring of
$0 - (90)^2 = \frac{2 \times a \times 50}{100}$	mass M and R rotating about an axis, passing
100	through its centre and perpendicular to the
$-8100 = \frac{3a}{3}$	plane is (b) $MD^2/4$
5	(a) MR (b) MR /4 (c) $MP^2/2$ (d) (2/5) MP^2
-8100×5	RRB ALP CRT II Physics & Maths 22 01 2019 Shift III
$a = \frac{a}{2}$	Ans (a) · Given the mass of the circulating ring is 'M'
$a = -13500 \text{ m/sec}^2$	and radius 'R'.
Negative sign shows that it is retardation	We take elementary unit section of the ring
$a = 13500 \text{ m/sec}^2$	M
Force = mass \times acceleration	$dm = \frac{m}{2\pi P}$
$= 0.05 \times 13500$	So $dI = dm(R)^2$ $\therefore I = mr^2$
= 675N	
11 Two wires A and B of same material and	$dI = \frac{IVI}{I} \cdot R^2$
11. I wo wires, A and D, of same material and length are stretched by applying the same load	$2\pi R$
If the diameter of wire A is twice that of wire B.	Integrating the mass moment of inertia
then the ratio of the extensions produced in the	∕ ∖dm
wires by applying the same load will be	10
(a) 1:2 (b) 2:1	Â
(c) 1:4 (d) 1:1	R
RRB ALP CBT II Physics & Maths 22 .01.2019 Shift III	
Ans. (c) : Given that,	
Diameter of $A = 2 \times$ diameter of B	M
Let diameter of $B = d$,	$\int dI = \int \frac{M}{2\pi \pi} R^2 dx$
So,	2 $2\pi R$
diameter of $A = 2d$	$I = \frac{M}{P} \int \frac{2\pi R}{dx}$
Change in length $(\Lambda \ell) = \frac{F_{\ell}\ell}{2}$	$1 - \frac{1}{2\pi} \frac{1}{2$
Change in length $(\Delta t) = \frac{1}{\gamma A}$	M
Where, $F = Force$ or load	$=\frac{1}{2}R(2\pi R-0)$
$\ell = \text{original length}$	$L = MR^2$
	12 Which of the following will not exist for a
γ = Y oung's modules	liquid in a gravity – free space
A = cross section area	(a) Viscosity (b) Surface tension
From the questions,	(c) Upward thrust (d) Pressure
The force, original length (l) and young's modulus is	RRB ALP CBT II Physics & Maths 22 .01.2019 Shift III
same for both wire.	Ans. (c) :
So,	Upward thrust is defined as the force that is exerted on
$F.\ell$	an object by the fluid when the object is submerged. It
Change in length of wire A, $(\Delta \ell)_A = \frac{1}{\sqrt{A}}$	is also called as buoyant force. It always acts upwards.
Г. <i>в</i>	It always acts against the weight of an object.
$(\Delta \ell)_{\rm B} = \frac{F.\ell}{2}$	$F_{buoyant} = \rho \times g \times V$
γ.A'	where, $\rho = \text{density of fluid}$
$\pi(24)^2$	g = acceleration due to gravity
Area of wire $B_A(A') = \frac{\pi(2u)}{2}$	V = volume of fluid
4	In gravity free space,
πd^2	$F_{buoyant} = 0$
Area of wire $A(A) =$	LILINAL IS UDWARD INFUST WILL NOT exist in a gravity free
	space

Viscosity : The property of a fluid which opposes the	16. What is the relative density of a solid of mass
relative motion between the layer is called viscosity.	50 gm which when fully immersed in water weight 10 gm ²
surface tension : It is a property of inquids tendency to	$(a) 0.8 \qquad (b) 1.25$
shrink into a lower surface area as a result of bulk force	$ \begin{array}{cccc} (a) & 0.0 \\ (b) & 2.5 \\ (c) & 2.5 \\ (d) & 5 \\ \end{array} $
from inner molecules	$\begin{array}{c} (0) & 2.3 \\ \hline \\ DDR & A I D & Toob & 23.01.2010 Shift I \\ \end{array}$
	KKD ALF & Tech. 25.01.2019 Shift-1
surface tension = $\frac{\text{force}}{-1}$	Ans: (b) Magaz Gaulid
length	Mass of solid $= 50 \text{ gram}$
Pressure : Fluid pressure is a measurement of the force	Decrease in weight of solid $= 50-10 = 40$ gram
per unit area on an object in the fluid or on the surface	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
of a closed container.	volume of solid – 40 cc
• Viscosity, surface tension and pressure does not	Hence the density of solid $=$ <u>Mass</u>
depends on the gravity.	Volume
14. Two objects A and B of masses 4 kg and 6 kg	50
are acted upon by the forces F_1 and F_2 required	$=\frac{1}{40}$
to accelerate them at 7 m/s^2 and 4 m/s^2	40 - 1.25 mm/cc
respectively. Which of the following	– 1.25 gm/cc
relationships between the force F_1 and F_2 holds	relative density = $\frac{\text{density of solid}}{\text{density of solid}} = \frac{1.25}{1.25}$
true for the required purpose?	density of water 1
(a) $F_1 > F_2$ only	= 1.25 gm/cc
(b) $F_1 = F_2$	17 Find the length (in cm) of the edge of a cube of
(c) $F_1 < F_2$ or $F_1 > F_2$, depending on the mass	a niece of wood which weighs 80 N (Use $\sigma = 10$
density of the material of the objects. (1)	m/s^2 , density of wood = 1g/cm ³)
(d) $F_1 < F_2$ only	(a) 60 (b) 20
RRB ALP CB1 II Physics & Maths 22.01.2019 Shift III	(a) = (b) = (c)
Ans. (a) : Given that,	RRB ALP & Tech. 23.01.2019 Shift-I
$Mass(m_1) = 4 kg$	Ans : (b) Let the side of cubical piece = a
$Mass(m_2) = 6 \text{ kg}$	Volume = a^3
Acceleration $(a_1) = / m/sec^2$	Force $= 80 \text{ N}$
Acceleration $(a_2) = 4m/\sec^2$	$q = 10 \text{m/s}^2$
We know that, $() = ($	density (a) = $1 g/cm^3 = 1000 kg/m^3$
Force $(F) = Mass (m) \times Acceleration (a)$	Force $= \mathbf{m} \times \mathbf{q}$
50,	$80 = m \times 10$
$\mathbf{F}_1 = \mathbf{m}_1 \times \mathbf{a}_1$	$m = 8 k\sigma$
$= 4 \times /$	
= 28 N	density(ρ) = $\frac{m (mass)}{m}$
$\mathbf{F}_2 = \mathbf{m}_2 \times \mathbf{a}_2$ = $\mathbf{c} \times \mathbf{a} = 2 \mathbf{A} \mathbf{N}$	v (volume)
$-0 \times 4 - 24N$ Deletionship between the force $-E > E$	8
Relationship between the force $-\Gamma_1 > \Gamma_2$.	$1000 = \frac{1}{1000}$
	v
15. Dirt can be removed from a carpet by shaking	$V = \frac{8}{3}$
it vigorously for some time in process that is based on	1000
(a) Second law of motion	
(b) Both third and second laws of motion	$(a)^3 = \frac{1}{1000}$
(c) Third law of motion	1000
(d) First law of motion	$a = \frac{2}{m}m$
RRR ALP CRT II Physics & Maths 22, 01 2019 Shift III	10 ¹¹¹
Ane (d) :	2
Alls. (u).	$a = \frac{-10}{10} \times 100 \text{ cm}$
• Newton's first law of motion also known as the law of inertia. The property of inertia is the property of	
a body that causes it to tend to stay in a steady state	a = 20 cm
of motion or at rest unless an external force is	18. Find mass of an iron cube of side 2 cm.
applied to the body	(Density of iron is 7.8 gm/cm ³)
When a carnet is shaken with a stick the motorial of	(a) 15.6gm (b) 3.9gm
the carpet moves in forward and backword	(c) 0.975gm (d) 62.4gm
directions. The dust particles on the carpet tend to	RRB ALP & Tech. 23.01.2019 Shift-I
remain at rest due to their property of inertia Since	Ans : (d) Volume of iron cube $= 2 \times 2 \times 2$
the dust narticles get senarated from the carnet	$= 8 \text{ cm}^3$
because they are still at rest they fall under the	Mass of cube = volume \times density
force of gravity. Thus it is based on the first law of	$= 8 \times 7.8$
motion.	= 62.4 gm
	02.7 gm

19. An object with greater— —has greater inertia 23. A uniform meter scale weights 50g. It is pivoted (b) Mass (a) Acceleration at the 70cm mark. Where should a 40 g mass be (c) Velocity (d) Volume placed so that the scale is in equilibrium? (a) At the 45 cm mark (b) At the 25 cm mark RRB ALP & Tech. 23.01.2019 Shift-I Ans : (b) Inertia is depend on the mass of the object (c) At the 95 cm mark (d) At the 5 cm mark RRB ALP & Tech. 23.01.2019 Shift-II Hence, an object with greater mass has greater inertia. Ans : (b) In equilibrium condition :-20. Acceleration due to gravity on moon is 1/6th $\sum m = 0$ that on earth. How would an astronaut weigh $\overline{40} \times x = 20 \times 50$ on moon if he weight 90 kgf on earth? $x = \frac{20 \times 50}{20}$ (acceleration due to gravity on earth = $10m/s^2$) (a) 9N (b) 90N 40 (c) 150N (d) J15 x = 25 cmRRB ALP & Tech. 23.01.2019 Shift-I Find the mass (in kg) of a tank completely 24. **Ans** : (c) Mass (m) = 90 kgfilled with kerosene of dimensions 5m × 2m × acceleration due to gravity = 10 m/sec^2 1m (Density of kerosene is 800 kg/m³) Astronaut weight on earth, (b) 1250 (d) 12500 (a) 8000 $\begin{array}{l} W=m\times g\\ =90\times 10 \end{array}$ (c) 800 RRB ALP & Tech. 23.01.2019 Shift-II = 900 N**Ans : (a)** density = $\frac{\text{Mass}}{\text{Volume}}$ Weight on moon = $\frac{1}{6} \times$ weight on earth *:*.. $mass = density \times volume$ $=\frac{1}{6} \times 900$ mass of kerosene = $800 \times 5 \times 2 \times 1 = 8000$ kg 25. Acceleration due to gravity is highest at = 150 N(a) the poles (b) the equator Acceleration due to gravity on Jupiter is two 21. (c) at an infinite distance from the earth and a half times that on earth. How much (d) the center of the earth would a 250 kg satellite weight (in N) on RRB ALP & Tech. 23.01.2019 Shift-II Jupiter? (acceleration due to gravity on earth = Ans : (a) Acceleration due to gravity (g) is highest at 10m/s^{2}) the poles. As the distance decreases from the centre g (a) 6250 (b) 10 decrease and vice - versa. (d) 100 (c) 625 Find the density (in kg/m³) of a piece of wood 26. RRB ALP & Tech. 23.01.2019 Shift-II measuring 6cm×8cm×5cm and weighing 1.92N **Ans : (a)** Mass on earth (m) = 250 kg $(g = 10m/sec^{2})$ Acceleration due to gravity $(g) = 10 \text{ m/s}^2$ (a) 3000 (b) 300 Weight on earth $(w) = m \times g$ (c) 8000 (d) 800 $= 250 \times 10^{\circ}$ RRB ALP & Tech. 23.01.2019 Shift-II = 2500 N Ans: (d) Given that, Weight on Jupiter = $\frac{5}{2} \times 2500 = 6250$ N Volume (V) = $6 \text{ cm} \times 8 \text{ cm} \times 5 \text{ cm}$ $=\frac{240}{1000000}=\frac{24}{100000}\,\mathrm{m}^3$ 22. A block of metal of mass 500 g has a relative density of 2.5. What will be its apparent mass Weight (W) = 1.92 Nwhen it is fully immersed in water? $(g) = 10 \text{ m/s}^2$ (a) 250g (b) 300g w = mg(c) 200g (d) 400g $1.92 = m \times 10$ RRB ALP & Tech. 23.01.2019 Shift-II $m = \frac{1.92}{10}$ Ans: (b) Actual mass = 500relative density = 2.5m = 0.192 kgapparent mass = ?(density) (d) = $\frac{\text{mass}(m)}{\text{volume}(v)} = \frac{0.192}{24}$ Actual mass Relative density = -Actual mas - appearant mass 100000 $2.5 = \frac{500}{500 - x}$ $(d) = \frac{0.192 \times 100000}{24} = \frac{19200}{24} = 800 \text{ kg/m}^3$ 2.5(500-x) = 50027. Find the length of the edge of a metal cube of 1250 - 2.5x = 500density 8 g/cm³ which weight 17.28 kN. (Use g 2.5x = 1250 - 500 $= 10 \text{ m/s}^{2}$ 750 (a) 9 cm (b) 8 cm $\mathbf{x} =$ 2.5 (c) 10 cm (d) 6 cm x = 300gRRB ALP & Tech. 08.02.2019 Shift-I

Ans : (d) : volume = $\frac{\text{mass}}{\text{density}}$	Ans : (a) : Weight of solid = 75 gm
Volume of cube = $\frac{17.28 \times 10^3}{10 \times 8} = 216 \text{ cm}^3$	Weight of solid on sinking = 25 gm Amount of water displaced by solid $(75-25) = 50$ gm
:. Volume of cube = a^3 (a = side of cube) $a^3 = 216 \text{ cm}^3$	relative density = $\frac{\text{mass of solid}}{\text{amount of water displaced by solid}}$
$a = (216)^{\frac{1}{3}}$ cm = 6 cm	$=\frac{75}{50}=\frac{3}{2}=1.5$
28. Two children of 24 kg and 16 kg sit on one side of a see-saw at a distance of 1 m and 0.625 m respectively, from the fulcrum. If a body of 'm' kg sits on the other side of the see-saw at a	32. The effort done to shift a load is 15 units and the work done by the machine is 3. Then find the weight.
distance of 1.6 m from the fulcrum and the see- saw is in equilibrium. Find m. (a) 21.25 kg (b) 32.25 kg	(a) 45unit (b) 3unit (c) 5 unit (d) 15 unit PPR ALP & Toob 23 01 2010 Shift III
(c) 27.75 kg (d) 36.75 kg RRB ALP & Tech. 08.02.2019 Shift-I Ans : (a) : Since, the children of 24kg and 16kg are	Ans : (a) The effort done to shift a load is 15 units and the work done by the machine is 3 units. The weight
sitting on the one side and one child of mass 'm' is sitting on another side of mass 'm'. Therefore in equilibrium position -	 33. If the specific gravity of a body is less than 1, it will float on
$(24\times1) + (16\times0.625) = m\times1.6$ 24 + 10 = m × 1.6	(a) Water (b) Liquid (c) Mercury (d) Air PBR ALP & Tech 23 01 2019 Shift III
$m = \frac{34}{1.6}$ m = 21.25 kg	Ans : (a) If specific gravity comes out to be less than one. It simply means that it is less than dense than
 Hence, the weight of the child sitting on the other side will be 21.25kg. 29. The gravitational acceleration ism/s² at 	more than one, it means it is denser than water and it would sink in water.
the equator. (a) 9.87 (b) 9.72 (c) 9.78 (d) 9.83	34. The volume of a certain amount of water between 0°C to 4°C is (a) Increases(b) Decreases
RRB ALP & Tech. 08.02.2019 Shift-I Ans : (c) : The acceleration due to gravity at the equator is 9.78 m/sec. The diameter of the earth at the equator is	(c) Remains constant (d) Zero RRB ALP & Tech. 23.01.2019 Shift-III
 approximately 12,756 km. The equator divides the earth into the Northern Hemisphere and southern hemisphere. 30. Acceleration due to gravity on Mars is 1/3rd 	Ans : (b) The density of water is highest at 4°C and the volume is least. The volume of water increase when is heated or cooled at a temperature higher or lower than 4°C. Thus, volume of given amount of water decrease
that on earth. How much would an astronaut weight on Mars if he weighs 72 kg on earth? (Acceleration due to gravity on earth = 10 m/s^2)	between 0°C and 4°C while it increase above 4°C. 35. If a body is not homogeneous, then its density is
(a) 720 N (b) 240 N (c) 120 N (d) 360 N RRB ALP & Tech. 08 02 2019 Shift-L	a function of its (a) Pressure (b) Position (c) acceleration (d) velocity
Ans: (b) : Weight on earth $(W_1) = 72 \text{ kg}$ Acceleration due to gravity $(g) = 10 \text{ m/s}^2$	RRB ALP & Tech. 23.01.2019 Shift-III Ans : (b) If a body is not homogeneous, then its density
Gravity on mars (g) = g/3 = $\frac{10}{2}$ m/s ²	is a function of its position. The density of a substance is equal to mass per unit volume. The density of a homogeneous material is equal at all points on an
$g' = \frac{g}{3} = \frac{72}{3} = 24 \text{ kg}$	object.36. It is mainly due to the gravitational effect of the on the rotating earth that the level of
Weight on mars = $24 \times 10 = 240$ N31. What is the relative density of a solid of mass	water in the sea rises and falls.(a) Moon(b) Venus(c) Mercury(d) Sun
75 gm which when fully immersed in water weighs 25 gm? (a) 1.5 (b) 0.8	RRB ALP & Tech. 23.01.2019 Shift-III Ans : (a) The rise and fall of sea level is mainly due to
(c) 1.6 (d) 2.5 RRB ALP & Tech. 08.02.2019 Shift-I	the gravitational effect of the moon on the rotating earth.

46. Consider a planet whose mass and radius both	n = no. of moles R = Gas constant
weight W on Farth will weigh on that	T = Temperature
nlanet	Hence time is not describe the behaviour of gas
(a) $W/2$ (b) 2W	51 The density of an ideal gas can be doubled by
(c) $W/4$ (d) W	halving the :
RRB ALP & Tech. 22.01.2019 Shift-II	(a) Absolute temperature (b) Velocity
Ans : (d) : There will be no change in the mass of	(c) Mass (d) Pressure
object, only the weight will change due to gravitational	RRB ALP & Tech. 21.01.2019 Shift-I
acceleration. The mass of the object remain unchanged.	Ans: (a): From ideal gas equation :-
47. A cubical block of side 10 cm and with a mass	PV = nRT
of 600 g floats in water. How much of the cube	n
is submerged?	$P = \frac{\pi}{V} RT$
(a) 30% (b) 40%	v
(c) 60% (d) 50%	$P = \frac{\rho}{RT}$
RRB ALP & Tech. 22.01.2019 Shift-II	М
RRB ALP & Tech. 22.01.2019 Shift-III	MP $(ar^{n}(i))$
Ans: (c): Side of cube = 10 cm	$\rho = \frac{1}{RT} \qquad \dots (eq(1))$
Volume of cube = $(10)^3 = 1000 \text{ cm}^3$	From eq^n (i). It is clear that the density of an ideal gas
Mass of cube = $600 \text{ g} = 0.6 \text{ kg}$	can be doubled by halving the temperature.
density of cube (d) = m/V	52. An object of a specific mass will weigh -
600 0 6 / 3	(a) more on earth than on the moon
$=\frac{1000}{1000}=0.6$ g/cm ²	(b) same on both earth and moon
Percentage of immersed cube in water	(c) less on the earth than on the moon
$= 0.6 \times 100 = 60\%$	(d) zero on the earth
48. The actual weight of a person is determined by	RRB ALP & Tech. 22.01.2019 Shift-III
his:	Ans: (a) We know that
(a) Mass and the acceleration due to gravity	W = mg $eq(1)$
(b) Mass	On the moon $a' - \frac{g}{g} = eq(ii)$
(c) Mass and width	$\frac{1}{6}$ $\frac{1}{6}$
(d) Mass and height	From equation(i), it is clear that the weight is directly
RRB ALP & Tech. 22.01.2019 Shift-II	proportional to the acceleration due to gravity.
Ans: (a): The actual weight of a person is:-	From equation (1) and equation (1) it is clear that the
Weight = mass of object \times gravity	Weight on the surface of earth is more than that on the
W = mg	52 The density of ice is a composed to the
40 The appellance is a granitation of the Macania	55. The density of ice is ———————————————————————————————————
49. The acceleration due to gravity on the Moon is $(1/6)$ of that on the Farth Hance an object	(a) Equal (b) Neoligible
weighing 12 N on the Farth will weigh on	(c) Less (d) More
the Moon.	RRB ALP & Tech. 22.01.2019 Shift-III
(a) 6 N (b) 72 N	Ans : (c) The density of ice is less compared to the
(c) 2 N (d) 12 N	density of water. Ice has low density than water
RRB ALP & Tech. 21.01.2019 Shift-I	because it has a cage like structure. In this structure, a
Ans : (c) : Weight of body on the earth $(W) = 12N$	lot of vacant spaces are left when water molecules
Weight of body on the moon	linked in ice.
1	54. The mass of an object is a numerical measure
$= -\times W$	$\begin{array}{c} \text{of its} \\ \hline \\ (a) \text{Malarit} \\ \end{array} $
1	(a) velocity (b) Gravity (c) Inertia (d) Acceleration
$=\frac{1}{2}\times 12N$	DDR AL P & Tooh 22 01 2010 Shift III
6	Ans (a) The tendency of an object to resist changes in
= $2N$	its state of motion varies with mass is called inertia of
50. Identify the variable from below that does not	an object. Inertia is basically a measure of the mass of
describe the behaviour of a gas.	the body.
(a) Temperature (b) Volume	55. The apparent mass of a piece of metal when
(c) Pressure (d) Time	fully immersed in water is 60 gm. If the relative
RRB ALP & Tech. 21.01.2019 Shift-I	density of this metal piece is 2.5, find its actual
Ans : (d) : Ideal gas equation is –	mass (in gm)?
PV = nRT	(a) 300 (b) 40
where, $P = atmospheric pressure$	(c) 400 (d) 100
v = volume	RRB ALP & Tech. 21.01.2019 Shift-II

(a) (W_1+W_2) (b) $\frac{W_1+W_2}{2}$ (c) $\sqrt{W \times W}$ (d) $W \times W$ **Ans : (d) :** Given : relative density = 2.5 Apperant mass = 60 gram Actual mass = x(c) $\sqrt{W_1 \times W_2}$ (d) $W_1 \times W_2$ relative density = $\frac{\text{Actual Mass}}{\text{Actual Mass} - \text{Appearant Mass}}$ RRB Asst. Loco Pilot/Technician (Ahmedabad)-2014 Ans. (c): According to the question, it the weight of an object is W in one pan of an defective scale and W₂ on $2.5 = \frac{x}{x - 60}$ the other pan, then the correct weight of the object is equal to the geometrical mean of W_1 and W_2 . $\frac{5}{2} = \frac{x}{x - 60}$ 5x - 300 = 2xi.e $W = \sqrt{W_2 \times W_2}$ 59. On the placing of body successively in the pans 3x = 300of a faulty balance. whose sides are unequal, its x = 100 gramweight appeared to be 6.4 grains and 10 grams. Find the volume (in cm³) of a piece of metal of 56. The correct weight of the body is density 5000 kg/m³ and which weights 10.8 N. (a) 10 gm (b) 14 gm $(Use g = 10 m/s^2)$ (c) 8.2 gm (d) 8 gm (b) 216 (a) 21.6 RRB Asst. Loco Pilot/Technician (Ranchi)-2014 (c) 540 (d) 54 **Ans. (d):** Actual weight = $\sqrt{W_1 \times W_2}$ RRB ALP & Tech. 21.01.2019 Shift-II $=\sqrt{6.4\times10}$ Ans: (b): Given : density (d) = 5000kg/m^3 Weight (W) = 10.8 N= 8 gram.Gravitation (g) = 10m/sec^2 60. A wooden plank can rotate on a horizontal axis W = mgfixed in the middle. A child of mass 20 kg sits $10.8 = m \times 10$ on one side the axis at a distance of 1.5m from the axis and on the other side another child of $m = \frac{108}{100} =$ weight 16 kg sits at a distance of 2.0 m from the axis, then which boy will rise. m = 1.08 kg(a) 20 kg-weight (b) 16 kg-weight (d) both (a) and (b) (c) None of these $d = \frac{m}{V}$ RRB Asst. Loco Pilot/Technician (Kolkata)-2014 Ans. (a) : The child whose torque is less about the $V = \frac{m}{d} = \frac{1.08}{5000} m^3$ middle point of the frame will rise up, the torque of the 20W boy is 20 \times 1.5, less then the torque (16 \times 2 = 32) $V = \frac{1.08}{5000} \times 10^6 \text{ cm}^3 \left[\because 1m = 100 \text{ cm} \right]$ of the 16 W boy. therefore, 20W boy will rise up. 61. In comparison to the measurement of the surface of the Earth, those on top of Mr. $= 216 \text{ cm}^{3}$ **Everest demonstrate :** A body of mass 60 kg weight 222 N on Mars. 57. (a) decrease in weight with mass remaining the What is the acceleration due to gravity (in same m/s²) on Mars? (b) increase in the mass with weight remaining (a) 4.9 (b) 13.32 the same (c) 19.8 (d) 3.7 (c) decrease in both mass and weight RRB ALP & Tech. 21.01.2019 Shift-II (d) increase in both mass and weight Ans: (d): Given, RRB SSE Secundrabad (Shift-I), 01.09.2015 m = 60 kgAns. (a): The mass of a system is always a constant, i.e W = 222 Nsame in each case but the value of g decrease on going g = ?above or below the surface of the earth. The weight of From W = mgan object always depends on the acceleration due to gravity (g). Hence the weight of the object decrease at $g = \frac{W}{m}$ the height but mass remains the same. If two liquids of same mass and densities D₁ 62. $g = \frac{222}{60}$ and D₂ are mixed then density of mixture-(b) $\frac{D_1 D_2}{D_1 + D_2}$ (a) $\frac{D_1 + D_2}{2}$ $g = 3.7 \text{m/sec}^2$ Hence, on the mars acceleration due to gravity will be (d) $\frac{D_1 + D_2}{D_1 D_2}$ (c) $\frac{2D_1D_2}{D_1 + D_2}$ $3.7 \mathrm{m/sec^2}$. 58. The weight of the object appears on one pan of a faulty scale as W₁ and on the other pan as RRB Kolkata Chemical & Metallurgical W₂. True weight of the object-Er., 01.12.2002

Mass, Weight & Density

YCT

Ans. (c) : Density of mixture (D) = $\frac{\text{Total mass}(m)}{\text{total volume}(V)}$	67. The relative density of ice is 0.9 then what part of it will be above the water when it is put in water?
m+m	(a) 0.9 (b) 0.1
$=\frac{1}{m}m$	(c) zero (d) None of these
$\overline{D_1}^+ \overline{D_2}$	DMRC Electronics Engineering, 21.09.2014
$2D_1D_2$	Ans. (b) : Let volume of cube = $(1 \times 1 \times 1)$ cm ³
$D = \frac{1}{D_1 + D_2}$	relative density of ice $= 0.9$
63. The mass of an object is 100kg. If acceleration	$\frac{\rho_{ice}}{X}$
	$\rho_{\rm w}$ h
due to gravity on the moon is $-$ then mass of an 6	0.9 x
object on the surface of the moon will be –	=-
(a) $100/6$ kg (b) 60 kg (c) 100 kg (d) 600 kg	x = 0.9 cm
RRB Bangalore Section Engineer (Civil) 01.02.2009	Therefore, 0.9 part of ice under the water and 0.1 cm
Ans. (c) Mass always remains constant. Therefore the	part of ice above the water.
mass on the moon will be only 100 kg.	68. The weight of body in air is 30g and when
64. It is easier to swim in the sea than in the river	immersed in water is 26.25g. The relative
because – (a) Sea water is deep	density of the material of the body is –
(b) Density of sea	(a) $\frac{8}{2}$ (b) $\frac{8}{7}$
(c) Water keep rising in the ocean	$(1) = \frac{9}{100000000000000000000000000000000000$
(d) The density of water in the sea is less	(C) 8 (d) 8g/cm PPP Panchi Signal Maintainer Crown III 20 11 2005
Ans (b) • It is easier to swim in the sea than in the river	Ans (a):
because the density of sea water is more in comparison	Ans. (c) .
to river.	Relative density of substance = $\frac{\text{wall}}{W}$
65. The weight of an object is maximum	$W_{air} - W_{water}$
(a) on the equator (b) on the surface of the earth	=
(c) at the centre of the earth	(30-26.25)
(d) on the poles of the earth	
RRB Chandigarh Section Engineer (Civil), 26.02.2012	3.75
Ans. (d) : The weight of a body is maximum at the poles of the earth because the value of acceleration	= 8
due to gravity is maximum at the poles while the	69. Two liquids which are equal to weight, are
weight of the body at the equator is minimum. The	mixed, their density are ρ_1 and ρ_2 respectively.
Weight of the object at the centre of the earth is zero.	The density of mixture will be -
(a) half the weight at the surface	(a) $\frac{\rho_1 + \rho_2}{\rho_1 - \rho_2}$ (b) $\frac{2\rho_1 \rho_2}{\rho_2}$
(b) infinite	$2 \qquad \qquad \rho_1 + \rho_2$
(c) twice the weight at the surface	(c) $\frac{\rho_1 + \rho_2}{\rho_1 + \rho_2}$ (d) $\frac{\rho_2 - \rho_1}{\rho_1 + \rho_2}$
(d) Zero RRB Chandigarh Section Engineer	$\rho_1\rho_2$ 2
(Mech.), 26.02.2012	RRB Allahabad Signal Maintainer-II, 22.01.2006
Ans. (d) The weight of the object at the centre of the	Ans. (b) : Let, weight of the liquids are W and volume
earth is zero because the value of accretion due to gravity is zero	are V_1 and V_2 .
at centre $h = R_e$	density of mixture = $\frac{\text{total mass of maxture}}{1}$
g' = 0	total volume of mixture
The acceleration due to gravity at any depth is given as –	$(\mathbf{M}_1 + \mathbf{M}_2)$ $2\mathbf{M}_1$ $(\cdots \mathbf{W}_2 = \mathbf{W}_2 = \mathbf{W})$
$g_{i} = g\left(1 - \frac{d}{d}\right)$	$\frac{(M_1 + M_2)}{(V + V)} = \frac{2M}{M} \left\{ \begin{array}{c} M_1 + M_2 \\ M_1 - M_2 \\ M_1 - M_2 \\ M_2 \end{array} \right\}$
$a = B \left(\begin{array}{c} R \end{array} \right)$	$(\mathbf{v}_1 + \mathbf{v}_2) = \frac{\mathbf{n}_1}{\mathbf{n}_1} + \frac{\mathbf{n}_2}{\mathbf{n}_2} (\cdots \mathbf{n}_1 - \mathbf{n}_2 - \mathbf{n}_1)$
Where, g_d = acceleration due to gravity at some depth.	$P_1 P_2$
u - ueptin from its surface.	$=\frac{2}{1-1}=\frac{2}{2+2}$
	$\frac{1}{2} + \frac{1}{2} - \frac{p_1 + p_1}{2}$
$[g_d = 0]$	$\mu_1 \mu_2 \mu_1 \mu_2$
$W = mg_d$	Density of mixture = $\frac{2\rho_1\rho_2}{\rho_2}$
W = 0	$\rho_1 + \rho_2$

70. A vessel has, mercury (density = 13.6 g/cm^3) at 74. If the volume of four bodies of equal mass are V_1 , V₂, V₃ and V₄ respectively then which body will the bottom and oil (density 0.8 g/cm^3) at the have greater density if $V_4 > V_2 > V_3 > V_1$ then top. Half of the volume of a floating (b) V₃ (a) V₂ homogeneous sphere is immersed in mercury (c) V_1 (d) V₄ and half, in oil. The density (g/cm³) of the RRB Trivandrum (Tech.), 29.06.1999 material of the sphere. Ans. (c): By the formula-(a) 3.3 (b) 6.4 (c) 7.2 (d) 12.8 density = $\frac{\text{mass}}{1}$ Delhi Metro Rail Corporation Train Operators', volume(i) 14.09.2003 (Mass is same for all bodies) **Ans. (c) :** Density of substance of sphere $=\frac{\rho_{Hg} + \rho_{oil}}{2}$ According to the equation (i), which body has less volume, has more density. $=\frac{(13.6+0.81)}{2}$ Hence, V_1 has density. (given: $V_4 > V_2 > V_3 > V_1$) What is density. of solid metals when hearted 75. $=\frac{14.4}{2}=7.2$ (a) Increases (b) Decreases (c) Equal (d) None of these **RRB Kolkata (Tech.)**, 29.08.1999 The reading of spring balance when a block of 71. air is suspended from it is 60 N. When the Ans. (b): When metals are heated, they expand due to block is immersed in less volume in water. The which volume increase but mass remains constant by reading of a balance changes to 40 N - the formularelative density of the block should be density = <u>mass</u> (d) $\frac{3}{2}$ volume (c) 6 (b) 2 (a) 3 therefore, when metals are heated, their density **RRB** Bangalore Material Superintendent, decrease. 21.11.2004 76. Generally, the density of any liquid increases Ans. (a) : Relative density of block = $\frac{W_{air}}{W_{air} - W_{water}}$ with increases temperature -(b) increase (a) decrease (c) remains constant $=\frac{60}{(60-40)}$ $=\frac{60}{20}=3$ (d) first increase and then decreases **RRB Kolkata Supervisor (P. Way), 20.02.2000** Ans. (a) : Generally, the density of a liquid decrease with increase in temperature. Because by increasing the temperature the volume of a liquid increase. But the 72. A vessel is filled with oil of relative density 1.2 up mass remains constant. to a height of 3cm and water is filled up to 10 cm Whose density will be higher in the same 77. above it. If the relative density of mercury is 13.6 quantity of viscous (thick) liquid and nonthen the bottom of the vessel will be. viscous liquid. (a) Equal to 1 cm of Hg (b) Equal to 5 cm of Hg (a) viscous (b) non-viscous liquid (c) Equal to 13cm of Hg (c) None (d) both (a) and (b) (d) Equal to 15 cm of Hg. **RRB Mumbai Electrical**/ RRB Trivandrum (Tech.), 09.11.1997 **Diesel Drivers', 03.06.2001** Ans. (a) : According to the question-Ans. (a) : If the quantity of thick (viscous) and non- $\rho_{\rm Hg} \; gh = \rho_{oil} \; gh_1 + \rho_{water} \; gh_2$ viscous liquid are equal then the no. of molecules in the $13.6 \times gh = 1.2 \times g \times 3 + 1 \times g \times 10$ viscous liquid will be more than the no. of molecules in 13.6 h = 3.6 + 10the non-viscous liquid. Hence, the mass of the viscous $h = \frac{13.6}{13.6}$ (thick) liquid will also be more. The density will be higher than that of a viscous liquid. h = 1 cm of Hg.A body of a substance whose density is d is 78. 73. Among four substance M₁, M₂, M₃ and M₄ of immersed in a liquid of density &, which different masses having the same volume. completely sinks then -Which substance will have the least density If (a) $d > \rho$ (b) $\rho > d$ $M_2 > M_3 > M_1 > M_4$ then. (a) M_1 (c) $d = \rho$ (d) None of these (b) M_3 (c) M_4 (d) M_2 RRB Trivandrum (Tech.), 11.04.1999 **RRB Bhopal Section Engineer**, 24.11.2002 Ans. (a) : If a body made of a substance is placed in a mass Ans. (c): By formula, density = liquid and the body is completely submerged then the volume density of the body is greater than the density of the According to the question, given that $M_2 > M_3 > M_1 > M_4$ and liquid. So, $d > \rho$ volume is constant and by the formula M₄ has least density

Mass, Weight & Density

YCT

03.

Speed and Velocity

- Scalars:- Those physical quantity which require only magnitude but no direction for their complete representation are called Scalars. Ex- Distance, Speed, Work, Mass, Energy, Power, Temperature, Area, Volume, etc.
- Vectors:- A physical quantity which requires magnitude and direction both for representation. Ex.- Force, Displacements, Momentum, Acceleration, Velocity, Impulse, Pressure, Gravity, Electric flux, Weight, Torque.
- Tensors- A quantity that has different values in different direction is called Tensors.

Tensors can be classified according to following order.

- Zeroth-Order Tensors (Scalars): Among some of the quantities that have magnitude but not direction are e.g.: mass density, temperature, and pressure.
- All scalars are isotropic zero- order tensor (a quantity that has only magnitude such as temperature, entropy or mass.
- **First-Order Tensors (Vectors):** Quantities that have both magnitude and direction e.g.: velocity, force. The first-order tensor is symbolized with a boldface letter and by and arrow at the top part of the vector, i.e.: $\vec{0}$.
- The isotropic first order tensor (vector) is zero vector.
- Second-Order Tensors: Quantities that have magnitude and two directions, e.g. stress and strain. The second-order and higher-order tensors are symbolized with a boldface letter.

Vector addition-

(i) Triangle law of vector addition -

When two vectors are represented as two sides of the triangle with the order of magnitude and direction then the third side of the triangle represents the magnitude and direction of the resultant vector.

$$\vec{R} = \vec{A} + \vec{B}$$

(ii) Parallelogram law of vector addition-

If two vectors are represented by two adjacent sides of a parallelogram which are directed away from their common point then their sum (i.e. resultant vector) is given by the diagonal of the parallelogram passing away through that common point.

$$R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

(b) If the resultant vector R subtend an angle β with vector B and angle α with vector A, then

$$\tan \alpha = \frac{B\sin\theta}{A + B\cos\theta} \& \tan\beta = \frac{A\sin\theta}{B + A\cos\theta}$$

Case1- If A=B then R= 2Acos
$$\frac{\theta}{2}$$
 & $\alpha = \frac{\theta}{2}$

Case2- If $\theta = 0^\circ$ then , $R_{max} = A^2 + B$

Case3- If $\theta = 180^{\circ}$ then $R_{\min} = A-B$

Vector subtraction-

Subtraction of vector B from a vector A is defined as the addition of vector =B (negative of vector B) to vector A. Thus, $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$

Rotation of a vector -

- (i) If a vector is rotated through an angle θ , which is not an integral multiple of 2π the vector changes.
- (ii)If the frame of reference is rotated or translated the given vector does not change, the components of a vector may change.

■ The rectangular unit vector-

It is an important set of unit vectors and are those vectors having the direction of the positive x,y and z axis of a three dimensional co-ordinate system and denoted respectively by i,j and k

Rectangular component-

When a vector is resolved along two mutually perpendicular directions the components so obtained are called rectangular components of a given vector.

Rectangular components of a vector in a plane-

$$\vec{A} = \vec{A}_x + \vec{A}_y$$
, $\vec{A} = A_x \hat{i} + A_y \hat{j}$

If \vec{A} makes an angle θ with x-axis then-A_x = A cos θ A_y = A sin θ

$$\vec{A}_{y} \xrightarrow{\vec{\theta}}_{\vec{A}_{x}} \xrightarrow{\theta} x$$

• Magnitude of vector -

$$A = \sqrt{A_x^2 + A_y^2} \quad \tan \theta = \frac{A_y}{A_x} \Longrightarrow \theta = \tan^{-1} \left(\frac{A_y}{A_x} \right)$$

- **Rest:** When a body does not change its position with respect to time, the body is said to be in rest.
- **Example:** A bed lying in a room is in the state of rest, because it does not change its position with respect to time.
- Motion: When a body changes its position with respect to its surrounding, it is said to be in motion.
- **Example:** A train moving on rails
- **Rest and motion as relative terms -** Rest and motion are relative states. It means an object which is at rest in one frame of reference can be in motion in another frame of reference.

Types of Motion –

On the basis of direction:-

- 1. One dimensional Motion- if only one out of three co-ordinates specifying the position of the object with respect to time, then it is called one dimensional motion or rectilinear motion.
 - For Example (i) Motion of car on straight road. (ii) Motion of a body under gravity.
- 2. Two dimensional Motion If only two out of three co-ordinates specifying the position of the object with respect to time, then the motion is called two dimensional motion.
- For Example –
- (i) A gymnast on a balance beam.
- (ii) Motion of planets around the sun.
- (iii) A car moving along zig-zag path on a level road.
- 3. Three dimensional motion -The motion of three co-ordinates specifying its
- position change with respect to time.

•For example -

- (i) Movement of gyroscope.
- (ii) A kite flying on a windy day.
- (iii) Motion of an Aeroplane in space.

On the basis of moving object in space:-

- 1. Uniform Motion: When moving objects cover equal distances in equal time intervals.
- 2. Non Uniform Motion: When moving objects cover different distances in equal time intervals.

■ Frame of reference-

A Frame of reference is a well defined co-ordinate system and with respect to this the state of rest or motion of a body is described. There are two types of frame of reference.

(i) Inertial frame of reference- A frame of reference in which a body continues to be in a state of rest or in a state of a uniform motion. If no external force act on the body is called an inertial frame of reference.

(ii) Non- inertial frame of reference-

A frame of reference in which a body is accelerated without applying any external force on a body is called accelerated or non-inertial frame of reference.

Speed and Velocity

Distance and Displacement -

Distance (x) -

- Total path x-ACB travelled by the body between initial and final position in definite interval is called Distance
- It is a scalar quantity.
- It have no direction
- Distance will be always positive.
- Distance have infinite function. •
- Distance covered by particle never decreases.
- Its SI unit is meter (m) and dimensional formula is $[M^0L^1T^0]$

Displacement (\vec{x}) -

- Displacement is the minimum possible path (AB) • between initial and final position.
- It is a vector quantity. •
- Its direction will be always from initial to final position.
- It may be +ve, -ve or zero.
- It have only one unique function.
- Its SI unit is meter and dimensional formula is $[M^{0}L^{1}T^{0}].$

Speed and Velocity-

Speed-: The rate of change of position of an object with respect to time in any direction is called its distance travelled(s)

speed.Speed(V) =
$$\frac{\text{distance travened}}{\text{time taken(t)}}$$

- It is a scalar quantity
- It's S.I unit is m/sec. •

Uniform Speed-

If a body covers equal distance in equal intervals of time it is said to be moving with uniform speed.

- Example-
- (i) A rotating fan
- (ii) A rocket moving in a space.

Variable speed or Non-Uniform speed:-

If a body covers unequal distances in equal intervals of time. It is said to be moving with a variable speed.

Example-

- (i) A train starting from a station.
- (ii) A dog chasing a cat.

Average speed :

The ratio of total distance travelled by the object to the total time taken is called average speed.

Average speed = time interval

Instantaneous speed:

If the speed of a body is continuously changing with time. Then the speed at some particular instant during the motion is called instantaneous speed.

Speedometer of a moving For example automobile measures instantaneous speed.

■ Velocity : The rate of change of displacement with respect to time the body in specified direction is called velocity.

Velocity = $\frac{\text{Displacement}}{\text{Time taken}}$

- It is a vector quantity.
- It may be +ve, -ve or zero.
- It's S.I. unit is m/sec.
- Uniform velocity -

When a body covers equal distances in equal intervals of time in a particular direction the body is said to be moving with uniform velocity.

- **Non-uniform velocity-** when a body covers unequal distances in equal intervals of time in a particular direction the body is said to be non-uniform velocity.
- Average Velocity- The ratio of the total displacement to the total time taken by the body is called average velocity.

Average velocity = $\frac{\text{Total displacement}}{\text{Total time taken}}$

Instantaneous Velocity -

The velocity of a particle at any instant of time is known as instantaneous velocity Instantaneous \bullet

velocity = $\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$

Acceleration -

The rate of change of velocity with respect to time is known as acceleration.

Acceleration = $\frac{\text{Change in velocity}(\Delta V)}{\text{Time interval}(\Delta t)}$

- Its S.I unit is m/sec²
- It is a vector quantity
- It may be +ve, -ve or zero
- If velocity increases then acceleration is +ve
- If velocity decreases then retardation and 'it' is -ve.
- If velocity is constant then a = 0 (i.e uniform motion)
- **Uniform Acceleration** When a body describes equal changes in velocity in equal intervals of time, it is said to be moving with uniform acceleration.

Non- Uniform Acceleration-

If an object is moving with non-uniform acceleration, it means that change in velocity is unequal for equal interval of time.

Average Acceleration-

The ratio of the total acceleration to the total time taken by the body is called average acceleration.

Instantaneous Acceleration-

It is defined as the acceleration of body at any instant of time.

Instantaneous Acceleration = $\lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \frac{dV}{dt}$

- Formula and concept for uniformly accelerated motion in a straight line
- Scalar formVector form• v = u + at $\vec{v} = \vec{u} + \vec{a}t$ $s = ut + \frac{1}{2}at^2$ $\vec{s} = \vec{u}t + \frac{1}{2}\vec{a}t^2$
- $v^2 = u^2 + 2as$ $\vec{v}.\vec{v} \vec{u}.\vec{u} = 2\vec{a}\vec{s}$

$$\mathbf{s} = \left(\frac{\mathbf{u} + \mathbf{v}}{2}\right) \mathbf{t} \qquad \qquad \mathbf{\ddot{s}} = \frac{1}{2} \left(\vec{\mathbf{u}} + \vec{\mathbf{v}}\right) \mathbf{t}$$

- $s_n = u + \frac{a}{2}(2n-1)$ $\vec{s}_n = \vec{u} + \frac{a}{2}(2n-1)$
- Displacement of a particle in nth second of its motion in uniformly accelerated motion-

$$D_n = u + \frac{a}{2}(2n-1)$$

Relative motion in one Dimension ;- If \vec{x}_A and \vec{x}_B are their respective displacements with respect to the fixed origin. Then

- The relative displacement of B with respect to A is defined as $\vec{x}_{BA} = \vec{x}_{B} \vec{x}_{A}$
- The relative velocity of B with respect to A is defined as- $\vec{V}_{BA} = \vec{V}_B - \vec{V}_A$
- The relative acceleration of B with respect to A is defined as $\vec{a}_{BA} = \vec{a}_B \vec{a}_A$

Relative velocity of Rain with respect the Moving man -

A man walking west with velocity \vec{v}_m , represented by \overrightarrow{OA} . Let the rain be falling vertically downwards with velocity \vec{v}_r represented by \overrightarrow{OB} as shown in

The relative velocity of rain with respect to man $\vec{V}_{rm} = \vec{V}_r - \vec{V}_m$

Will be represented by diagonal \overrightarrow{OD} of rectangle OBDC.

:.
$$V_{rm} = \sqrt{V_r^2 + V_m^2 + 2V_r V_m \cos 90^\circ} = \sqrt{V_r^2 + V_m^2}$$

If θ is the angle which $\,\vec{V}_{rm}\,$ makes with the vertical direction then

$$\tan \theta = \frac{BD}{OB} = \frac{V_m}{V_r} \Longrightarrow \theta = \tan^{-1} \frac{V_m}{V_r}$$

• Swimming into the River-

A man can swim with velocity \vec{V} i.e it is the velocity of man with respect to still water. If water is also flowing with velocity \vec{V}_R , then velocity of man relative to ground. $\vec{V}_m = \vec{V} + \vec{V}_R$

Case I -

• If the swimming is in the direction of flow of water or downstream then-

$$\xrightarrow{} \vec{V} \\ \xrightarrow{} \vec{V}_{R} \qquad \vec{V}_{m} = \vec{V} + \vec{V}_{R}$$

Case II -

• If the swimming is in the direction opposite to the flow of water or then-

$$\stackrel{\bigstar}{\longrightarrow} \vec{V}_{R} \qquad \vec{V}_{m} = \vec{V} - \vec{V}_{R}$$

Case-III To cross the river from one bank to another bank.

(i) To cross the river in minimum possible path.

$$\begin{array}{c|c} & B \\ & & \\ & V_m \\ & & \\ & V_m \cos\theta \\ & \\ & \\ \hline & \\ & V_m \sin\theta \\ \end{array} \\ \end{array} V_r$$

$$d =$$
 width of river to reach from A to B,

$$V_m \sin \theta = V_r, \ \sin \theta = \frac{V_r}{V_m}$$
 , $\theta = \sin^{-1} \frac{V_r}{V_m}$

(ii) Time taken to cross the river -

$$t = \frac{d}{V_{m} \cos \theta} = \frac{d}{\sqrt{V_{m}^{2} - V_{r}^{2}}}$$

(iii) To cross the river in minimum possible time-

■ Motion Under Gravity –

• If a body is thrown vertically up with a velocity u in the uniform gravitational field (neglecting air resistance), then-

Important points about graphical analysis of motion -

• Instantaneous velocity is the slope of position time

curve
$$\left(V = \frac{dx}{dt}\right)$$
.

- Slope of velocity time curve = instantaneous acceleration $\left(a = \frac{dv}{dt}\right)$.
- V-t curve area gives displacement, $\left[\Delta x = \int v dt\right]$.
- a-t curve area gives change in velocity $\left[\Delta v = \int a dt\right]$
- Key points -
- $\begin{array}{c|c} \text{Differentiation} & \text{Differentiation} \\ \hline \text{Displacement} & \swarrow & \text{Velocity} & \longleftarrow & \text{Acceleration} \\ \hline \text{Integration} & \text{Integration} \\ \hline \text{Displacement} \leq \text{Distance.} \bullet & \frac{\text{Velocity}}{\text{Speed}} \leq 1 \\ \hline \text{Average velocity} & \text{Instantaneous velocity} \\ \hline \end{array}$
- $\frac{\text{Average velocity}}{\text{Average speed}} \le 1$ $\frac{\text{Instantaneous velocity}}{\text{Instantaneous speed}} = 1$

Different Motions and their Graphs :

- If distance > |displacement| this implies -
- > At least at one point in path, velocity is zero.
- > The body must have retarded during the motion.
- If particle travels distances S₁, S₂, S₃, with speeds V₁, V₂, V₃, then,

Average speed =
$$\frac{S_1 + S_2 + S_3}{\left(\frac{S_1}{V_1} + \frac{S_2}{V_2} + \frac{S_3}{V_3} \dots \right)}$$

• If particle travels equal distances $(S_1 = S_2 = S)$ with velocities V_1, V_2, V_3, \dots during time intervals t_1, t_2, t_3

then, Average speed =
$$\frac{1+1+2+2}{t_1+t_2+t_3}$$
.....

• If particle travels with speed V₁ and V₂ for equal time intervals i.e t₁ = t₂ = t, then

Average speed =
$$\frac{V_1 + V_2}{2}$$

0

• When a body travels equal distances with speed V_1 and V_2 , the average speed (V) is the harmonic mean

f two speeds i.e
$$\frac{2}{V} = \frac{1}{V_1} + \frac{1}{V_2}$$

Different Cases	V-t Graph	S-t Graph
1. Uniform motion	V = constant	S SEVI
2. Uniform accelerated motion with u = 0 at t = 0	V V W	$S = \frac{1}{2}at^{2}$
3. Uniformly accelerated with $u \neq 0$ at $t = 0$	u Voutai	$S = ut + \frac{1}{2}at^2$
4. Uniformly accelerated motion with $u \neq 0$ and $S=S_0$ at $t=0$		$S = u + \frac{1}{2}a^2$
5. Uniformly retarded motion till velocity becomes zero		$S = u t - \frac{1}{2} a t^{2}$ $t_{u} \rightarrow t$
6. Uniformly retarded then accelerated in opposite direction		

Motion in a Plane

- Motion in a plane is also called as a motion in two dimension.
- For example circular motion, projectile motion etc.
 Polar Vectors The polar vectors which have a starting point and describe the translation motion.
- Example- Displacement, Velocity, Force etc are polar vectors.
 Axial Vectors- The vector which represent rotational

effect and act along the axis of rotation in accordance with right hand screw rule are called axial vector.

• Example:- Angular velocity, Torque, Angular momentum etc.

■ Terms Related to motion in a plane v Position vector

• This equation express position vector r in terms of its rectangular component x and y.

Displacement Vector -

• In plane, displacement can be represented as - $\Delta r = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{i}$

$$\Delta \mathbf{r} = (\mathbf{x}_2 - \mathbf{x}_1)\mathbf{1} + (\mathbf{y}_2 - \mathbf{y}_1)\mathbf{1}$$

- Magnitude of displacement vector $|\Delta \mathbf{r}| = \sqrt{(\mathbf{x}_2 - \mathbf{x}_1)^2 + (\mathbf{y}_2 - \mathbf{y}_1)^2}$
- Direction of the displacement vector $\Delta \mathbf{r}$ is given by tor $0 = \frac{\Delta y}{\Delta y}$

 $\tan \theta = \frac{\Delta y}{\Delta x}$

Velocity Vector-(i) Average Velocity -

Average velocity in component form-

$$V_{av} = \frac{\Delta x}{\Delta t}\hat{i} + \frac{\Delta y}{\Delta t}\hat{j} = \Delta V_x\hat{i} + \Delta V_y\hat{j}$$

Direction of the velocity ΔV is given by-

$$\tan \theta = \frac{\Delta V_y}{\Delta V}$$

(ii) Instantaneous Velocity-

$$V = \lim_{x \to 0} \frac{\Delta r}{\Delta t} = \frac{dr}{dt}, V = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j}, V = V_x\hat{i} + V_y\hat{j}$$

Magnitude of Instantaneous Velocity-

$$\left|\mathbf{V}\right| = \sqrt{\mathbf{V}_{x}^{2} + \mathbf{V}_{y}^{2}}$$

Direction of V is given by- $\tan \theta = \frac{V_y}{V}$

Acceleration Vector -

(i) Average Acceleration-

• The average acceleration vector is defined as the rate at which the velocity changes. It is in the direction of the change in velocity $\overrightarrow{\Delta V}$

$$\vec{a}_{av} = \frac{\overline{\Delta V}}{\Delta t}$$
, $\vec{a}_{av} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$

(ii)Instantaneous Acceleration -

• It is defined as the limit of the average acceleration as Δt approaches zero.

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{V}}{\Delta t} = \frac{d\vec{V}}{dt}, \quad \vec{a} = \lim_{\Delta t \to 0} \left(\frac{\Delta V_x}{\Delta t} \hat{x} + \frac{\Delta V_y}{\Delta t} \hat{y} + \frac{\Delta V_z}{\Delta t} \hat{z} \right)$$

Motion in a plane with uniform acceleration-

$$\mathbf{V}_{\mathbf{x}} = \mathbf{V}_{\mathbf{o}\mathbf{x}} + \mathbf{a}_{\mathbf{x}}\mathbf{t}, \qquad \mathbf{V}_{\mathbf{y}} = \mathbf{V}_{\mathbf{o}\mathbf{y}} + \mathbf{a}_{\mathbf{y}}\mathbf{t}$$

Path of particle Under constant Acceleration-

$$x = x_0 + V_{ox}t + \frac{1}{2}a_xt^2 \dots along x-axis$$
$$y = y_0 + V_{oy}t + \frac{1}{2}a_yt^2 \dots along y-axis$$

- Circular Motion -
- When object is moving on a circular path on the circumference of the circle, then the motion is called circular motion.

Uniform Circular Motion-

- When object is moving on a circular path on the circumference of the circle, covers equal distances in equal intervals of time then the motion is called uniform circular motion.
- Angular displacement (θ)-
- It is the angle traced out by the radius vector at the

circular path. angle
$$(\theta) = \frac{dt}{radius}$$

arc

It is a vector quantity.

■ Angular Velocity (ω)-

It is the time rate of change of angular displacement. SI unit is rad/sec. $\vec{\omega} = \frac{\text{Angular displacement}}{T = 1}$

- Instantaneous angular velocity $\omega = \frac{d\theta}{dt}$
- Average angular velocity

$$\omega = \vec{\omega}_{av} = \frac{\text{Total angular displacement}}{\text{Total time taken}} = \frac{\Delta \theta}{\Delta t}$$

For clockwise rotation $\vec{\omega}$ $\vec{\omega}$ is directed downwards

• For anti-clockwise rotation $\vec{\omega}$ is directed upwards.

- Time Period (T):- The taken by object to completed one revolution on its circular path.
- **Frequency** (v):-The number of revolution per unit time on the circular path.
- Angular acceleration (α) -
- It is the time rate of change of angular velocity

$$\alpha = \frac{d\vec{\omega}}{dt}$$

- SI unit radian/second²
- When a body moves with constant angular velocity, its angular acceleration is zero.

■ Centripetal Acceleration (a_c) -

Acceleration of an object moving with uniformly on the circular, it acts along the radius towards the centre of the circular path.

$$a_{c} = \omega^{2}r = \frac{V^{2}}{r} = \omega V \left\{ \because \omega = \frac{V}{r} \right\}, \quad \vec{a}_{c} = \vec{\omega} \times \vec{V}$$

■ Centripetal Force (F_c) -

- The work done by centripetal force is zero.
- Centripetal force is essential for circular motion. without it the body cannot move in circular path.
- The K.E. and angular momentum cannot be increased by centripetal force.
- Tangential Acceleration (a_t) -
- The acceleration which acts along the tangent to the circular path. $a_t = \alpha r$, $\vec{a}_t = \vec{\alpha} \times \vec{r}$
- Total acceleration (ā) -

Where, a_t = Tangential acceleration $a_c = Centripetal acceleration$

Some relations -

- (i) Relation between time period and frequency (v) = $\frac{1}{T}$
- (ii) Relation between frequency angular velocity and

time, (
$$\omega$$
) = $\frac{\theta}{t} = \frac{2\pi}{T} = 2\pi v$

- (iii) Relation between linear acceleration and angular acceleration. $a = \alpha r$, $\vec{a} = \alpha \times \vec{r}$
- Motion in Vertical circle -
- Motion in a vertical circle is non-uniform circular • motion.

Tension at the lowest point (P)
$$T_P = \frac{mV_P^2}{l} + mg$$

Tension at the highest point Q. $T_Q = \frac{mV_Q^2}{t} - mg$

$$T_{\rm Q} = \frac{mV_{\rm P}^2}{l} - 5mg$$

Tension at point R-

$$\Gamma_{\rm R} = \frac{mV_{\rm R}^2}{l} \qquad T_{\rm R} = \frac{mV_{\rm P}^2}{l} - 2mg$$

•
$$T_P > T_R > T_Q \bullet T_P - T_Q = 6 \text{ mg} \bullet T_P - T_R = 3 \text{ mg}$$

- Tension at any point A T = $\frac{mV^2}{r}$ + mg cos θ
- Minimum velocity for vertical circular motion - V_0 at $Q \ge \sqrt{gl}$

(a)
$$V_{P}$$
 at $P \ge \sqrt{5gl}$ (b) V_{R}
(c) V_{R} at $R \ge \sqrt{3gl}$

• In case of minimum velocity-

- (a) $T_P \ge 6 \text{ mg}$ (b) $T_Q = 0$ (c) $T_R \ge 3 \text{ mg}$
- If $T_{min} < 0$, the string will slack and the body will fall down from the highest point. Hence, for "looping the loop" or completing the vertical circle $T_{min} \ge 0$.
- If $V_P = \sqrt{2gl}$, velocity and tension becomes zero at R and S and particle will oscillate along semi-circular path.
- If $V_P < \sqrt{2gl}$, velocity becomes zero between P and R and particle oscillate about with the lower point P.
- If $V_p > \sqrt{5gl}$ tension never becomes zero and particle will just complete the circle.
- For leaving, the vertical circle somewhere between $90^{\circ} < \theta < 180^{\circ}$. Tension becomes zero (T = 0) at the point of leaving but the velocity will not be zero.

$$\sqrt{2gl} < V_p < \sqrt{5gl}$$

■ Motion in Vertical circle -

T cos θ = mg,

 $T \sin \theta = \frac{mr}{r}$

$$\tan \theta = \frac{v^2}{rg}$$

Rounding a level curved Road -

• $\frac{mv^2}{r} \leq (F_1 + F_2)$ Where $F_1 = \mu R_1$

Where, $F_1 = \mu R_1$ and $F_2 = \mu R_2 \mu =$ Coefficient of friction between tyres and road.

•
$$V \le \sqrt{\mu rg}$$
, $V_{max} = \sqrt{\mu rg}$
This is the maximum speed without skidding

- If centripetal force is obtained only by the banking of roads, then the speed (v) of the vehicle for a safe turn. $v = \sqrt{r g \tan \theta}$
- If speed of vehicle is less than $\sqrt{r g \tan \theta}$. Then it will move inward (down) and (r) will decrease and if speed is more than $\sqrt{r g \tan \theta}$ then it will move toward (up) and (r) will increases.
- In normal life, the centripetal force is obtained by the friction force between the road and tyres as well as by the banking of the roads.
- Therefore the maximum permissible speed for the vehicle is much greater than the optimum value of the speed on a banked road.

• When centripetal force is obtained from friction force as well as banking of roads then maximum safe value

Bending of cyclist -

• When a cyclist takes turn at road, he inclines himself from the verticle slows down this speed and moves on a circular path larger radius.

If a cyclist is inclined at an angle θ , then

$$\tan \theta = \frac{V^2}{r\alpha}$$

rgWhere, V = Speed of the cyclist

r = Radius of path

g = Acceleration due to gravity

Projectile Motion –

When any object is thrown from horizontal at an angle θ except 90° then it moves on a parabolic known as trajectory. The object is called projectile and its motion is called projectile motion.

x-axis	y-axis
$U_x = U \cos \theta$	$U_y = U \sin \theta$
$a_x = 0$	$a_y = -g$
0 11 (×

Time of ascending (t) - along y axis-

$$V_y = U_y + a_y t$$
, $t = \frac{U \sin \theta}{g}$

$$\Gamma = 2t,$$
 $T = \frac{2U\sin\theta}{g}$

Height attained by the body in projectile motion - $H = \frac{U^2 \sin^2 \theta}{2g}$ • Condition for maximum height attained (H_{max}) – For maximum height,

$$\theta = 90^\circ$$
, $\sin \theta = 1$, $H_{max} = \frac{U^2}{2g}$

• Range produced by the body in projectile motion - $R = \frac{U^2 \sin 2\theta}{2}$

$$\mathbf{K} = \frac{\mathbf{g}}{\mathbf{g}}$$

- Condition for maximum Range : (\mathbf{R}_{max}) Sin 2 θ = 1 = max = sin90°, θ = 45°, $\mathbf{R}_{max} = \frac{\mathbf{U}^2}{\mathbf{g}}$
- Ratio $\frac{R_{max}}{H_{max}} = \frac{\frac{U}{g}}{\frac{U^2}{2}} = 2$ $R_{max} = 2 \times H_{max}$
- Two projective angles for the same range -

$$\theta_1 + \theta_2 = 90^\circ = \frac{\pi}{2}$$

- Projectile refers to an object that is in flight along the horizontal and vertical direction simultaneously.
 - Acceleration acts only in the vertical direction due to gravity (g).
 - The horizontal velocity of a projectile is constant. So there is no acceleration in vertical direction.
 - Projectiles travel with a parabolic trajectory due to the influence of gravity.
 - **EXAM POINTS**
- Newton's first law of motion gives the definition of
 Force
- The velocity of one moving body with respect to another moving body is called - Relative velocity
- If the magnitude of velocity of an object is increasing with time, then the acceleration of the object is

- Positive

- The formula for velocity is $-\frac{s}{t}$
- The rate of change of displacement is called

- Velocity

- For every action, there is an equal and opposite reaction Newton's third law of motion
- Which formula is used to convert the angular momentum of a body moving on a circular path into linear momentum a = r×a
- The tendency to resist the change in the present situation is called Inertia
- The rate of change of velocity is called Acceleration
- The maximum speed of a body can be -3×10^8 m/sec

- The distance covered per unit time is called speed
 The rate of change of momentum is directly proportional to the external force acting on the body. This statement is of Second law of motion
- The weight of a body is maximum at

- Poles of the Earth The rate of change of velocity of an object while its

velocity is increasing is called - Acceleration
 If two objects are thrown upwards with velocities V₁ and V₂ then the ratio of their maximum heights will

- The unit of momentum is CGS system is
- Dyne × second Motion of Earth around Sun is an example of
 - Circular Motion
- If an object is at rest, it will remain at rest, if it is in motion, it will remain in motion unless an external force is applied to it. This Statement is known as Newton's first law of motion
- The first equation of motion is $-\mathbf{v} = \mathbf{u} + \mathbf{at}$
- An iron ball and wooden ball of the same radius are released from the height h in vacuum. The time taken by both of them to reach the ground will be the -Same
 - The slope of a velocity-time graph represents Acceleration
- A cannon ball has been fired. The motion of this ball is an example of - Projectile motion
 The speed of a train is an example of

- Translatory motion

- In a projectile motion, a large angle with the horizontal produces High trajectory
- If the axis of rotation passes through an object while it is in motion, then that motion is called

- Rotational motion

• If a ball is thrown up, so what does not change

- Mass (m)

- If an object is moving in a circular path and completes one revolution in one second then its average speed will be
 - Zero
- Newton's first law of motion given the concept of Inertia
- The part of the body on which all the weight of the body is concentrated is known as
 Center of mass
 Earth has its own atmosphere

- Due to gravitational force

• It is difficult to fix a nail on a freely suspended wooden frame which law supports for this statement

- Newton's third law

The appropriate relation between the time period (T) and particle of mass (m) performing simple harmonic

motion is

- T =
$$2\pi \sqrt{\frac{m}{k}}$$

• The time period of the simple pendulum will be

 $-2\pi\sqrt{\frac{\ell}{g}}$

The correct relationship between moment of inertia (I), torque (τ) and angular acceleration (α) is

 $-\tau = \alpha \times I$

	Who can change the speed direction and shape of an		A person climbing a hill leans forward because
	object - Force		- To increase stability
	If a pendulum oscillates in a vacuum, its time period		A girl is swinging on a swing in sitting position when the girl stands up the period of swing will be
-	The change in seasons on the Earth occurs because		- Shorter
-	- Earth's revolution and inclination of its axis		The working principle of washing machine is
	A large force exerted on a rotating object result in		- Centrifugation
	- Large torque		A hunter aim his gun at a point between the eyebrows
	It is difficult to walk an ice because -		of a monkey sitting on a branch of a tree. Just as he
	Very less friction		Hit the monkey at the point aimed
•	If the wavelength of an electron and photon are the same then their linear momentum will be - Same		If a person sitting in a lift then when will be feel that
-	When the earth is orbited by a spacecraft	-	his weight gets increased
_	weightlessness is felt due to - zero gravity		- When the elevator going upward with speed
	If an object is thrown upwards, its velocity on		If the horse starts moving suddenly the rider on the
	reaching the maximum height will be -Zero (0 m/sec)	_	A cricketer pull his bands back word while catching a
	what will happen to the force between the two positive charge which are released after being held	-	fast moving ball because - Ball may come to rest
	near each other - Force will decrease		When a force of 5 Newton is applied to a mass of 2
	The velocity time graph of a body comes in a straight		kg the acceleration produced will be -2.5 m/sec^2
	line and touches the x-axis passing through the origin		If a sphere is rolling the ratio of its rational energy to
	the body is moving with - Changing in Acceleration		The velocity of a particle located at the center of a
•	A body strikes the ground vertically downwards with a velocity u and rebounds with the same speed. The	-	pipeline will be - Maximum
	change in velocity would be -2μ		An force $\vec{F} = (\hat{6i} + 2\hat{i} - 3\hat{k})$ acts on a particle and
	In a vacuum all free falling objects have	-	The force $\Gamma = \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix}$ is a particle and $\vec{\tau} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
	- Same acceleration		produces a displacement of $S = (2i - 3j - xk)$. If the
	An object is moving with non-uniform velocity and		work done is zero, the value of x is -2
	- Velocity time graph will be linear		the frequency of transverse vibration of a thread is
	If the velocity time graph is parallel to the time axis		100 cycle/sec. If the tension of the thread is increased to 4 times, then the frequency will be - 200 cycle/sec
	then - object is moving with a constant velocity		In the moving state of the lift the apparent weight
	The second	-	becomes twice the actual weight when
-	The acceleration of the body represents $-\frac{1}{dt}$		- lift goes up with acceleration g
	If the velocity time graph is parallel to the time axis,		Generally 'key' is used between two parts to stop
_	then the speed is - uniform		A particle of mass 10 kg is moving in a straight line
-	motion is - Straight line		If its displacement x, with time t, is given by
	In uniform circular motion		$x = (t^3 - 2t - 10)m$, then the force acting on it at the
	- Speed is constant and velocity is variable		end of 4 seconds is - 240 Newton
	Velocity of a body is said to be uniform, when		The Motion of the wheels of a bullock-cart while
	- Both the magnitude and direction of velocity are		moving on the road is an example of
	V-II	_	A particle is moving with the same speed but its
	The formula to find acceleration is $-\alpha = \frac{\sqrt{\alpha}}{4}$		direction is constantly changing. Then path of the
	If a ball is thrown up, what does not change		particle will be - Circular
	- Acceleration (due to gravity)		Two spheres made of the same material and same
	Cyclist bends or leans while taking a turn because		radius are placed to each other, the gravitational force 'E' between them is $-\mathbf{F} \propto \mathbf{R}^4$
	- It filts so that the center of gravity remains inside		"There is no change in the position and direction of
-	A truck and a car are running at the same speed If the		any stationary or moving object unless an external
	mass of the truck is 10 times more than the mass of		force acts on it." - Newton's first law of motion
	the car. The ratio between their kinetic energy will be	-	change in their state of rest or state of uniform motion
	- 10:1		along a straight line - Inertia
	A rocket works on the principle of		When the length of the pendulum clock becomes 4
	- newton's third law of motion or conservation of linear momentum		times then its time period is - doubled
	Newton's law of motion apply when the nature of		i ne minimum number of forces to keep a particle in equilibrium is -?
	matter is - particle nature		Newton-second is the unit of - Impulse
	If the velocity time graph of a particle is represented		The speed of a car increases from 20 km/hr to 50
	by $v = mt + c$, then the particle is moving with		km/hr in 10 second moving on a straight road. The
	- Constant acceleration	1	acceleration of that car is - 0.83 m/sec ²

- Which force is responsible for providing the necessary centripetal force to plants moving around the Sun - Gravitational force
 - If we suspend the pendulum in a vessel filled with liquid - The pendulum will stop soon
 - How much force is required to rotate a body of mass 6 kg in a circle of radius 3m with a velocity of 10 m/sec. - 200 N
- A particle is moving in a uniform circular motion with a uniform speed 'v' parallel to a circle of radius r. $-\frac{v^2}{r}$

The acceleration of a particle is

- If the horizontal range of a projectile if four times the maximum height, then the angle of projection is - 45°
- What is the magnitude of force which when applied on a body of mass 0.6 kg produces an acceleration of 0.08 m/sec^2 . - 0.048 N
- A force of 30 N acts on a body of 5 kg for 2 seconds then the acceleration will be -6 m/sec^2
- A second's pendulum is taken in a transport vehicle find the period of oscillation when the vehicle moves with an acceleration of 4 m/sec^2 vertically upwards

- 1.93 second

- What will be the speed of the body after three seconds if the body is mioving along a straing line at a speed of 20 m/sec and under goes an acceleration of 4 m/sec^2 - 32 m/sec
- A stone is dropped from a cliff its speed after it has fallen 100 m is - 44.72 m/sec

Friction between two objects is due to

- Irregularities on the surface

A thumb-tripped nail goes easily into wood because

- Move force acts on less area
- When a gun is fired, it exerts a forward force on the bullet. The bullet also exerts on equal and opposite reaction force on the gun. This phenomenon is explained by - Third law of motion
- When a moving bus suddenly applies brakes, the passengers fall in the forward direction. It is because

- Newton's law of inertia

A boy sitting in a train moving with constant speed throws a ball straight in the air, then the ball will fall

- into the Hand

• When an object is moving with uniform velocity with respect to time then velocity-time graph represents

- Straight line

An object is moving with non- uniform velocity and uniform acceleration then

- Velocity time graph will be linear

■ If the velocity- time graph is parallel to the time axis, - The object is moving then

with constant velocity

- The time graph for uniformly accelerated body - Straight line.
- An iron ball and a wooden ball of equal radius are dropped from height h in vacuum. The time taken by both to reach the earth is - Approximately same.
- Velocity of body is said to be uniform when

- Both the value and direction

of velocity are constant.

PREVIOUS YEAR QUESTIONS

 A car accelerates uniformly from 5 ms⁻¹ to 10ms⁻¹ in five seconds. Find the acceleration of the car (a) 1 ms² (b) 1 ms⁻² (c) 1 ms¹ (d) 1 ms⁻¹ RRB ALP CBT II Physics & Maths 21 .01.2019 Shift I 	Ans. (a) : Scalars are the physical quantities that only have the magnitude and other characteristics. A scalar is unvaried by any changes in the coordinate system. Examples: volume, energy, mass, density, time, electric current are scalar quantity. A vector Quantity is one which is characterized by both
Ans. (b) : Given : Initial velocity = 5 m/sec.	Imagnitude and direction. Examples are: Torque, Impulse, Electric field.
Final velocity = 10 m/sec. Time = 5sec.	uniform acceleration. It travels a distance 'x' in the first two seconds and a distance 'y' in the
$\Delta V = \text{Final velocity} - \text{Initial velocity}$ $= 10 - 5$ $= 5 \text{ m/sec}$	next two seconds. If $y = nx$, then $n =$ (a) 1 (b) 3 (c) 2 (d) 4
Acceleration of car (a) = $\frac{\Delta V}{\Delta V}$	RRB ALP CBT II Physics & Maths 21 .01.2019 Shift III Ans. (b) : Given that,
$=\frac{5m/\sec}{5\sec^2}$	$a \xrightarrow{x} y \xrightarrow{y} t = 4 \sec t = 0$
 = 1 m/sec² or, 1ms⁻² Which one of the following physical quantities is a scalar quantity? 	$S = ut + \frac{1}{2} \times at^2$
 (a) Electric current (b) Electric field (c) Torque (d) Impulse RRB ALP CBT II Physics & Maths 21 .01.2019 Shift II 	$x = \frac{1}{2}a \times 4$ x = 2a(i)

and
$$S = ut + \frac{1}{2} \times at^{2}$$

 $x + y = \frac{1}{2} \times a \times 4 \times 4$
 $x + y = \frac{1}{2} \times a \times 4 \times 4$
 $x + y = \frac{1}{2} \times a \times 4 \times 4$
 $x + y = \frac{1}{2} \times a \times 4 \times 4$
 $x + y = \frac{1}{2} \times a \times 4 \times 4$
 $x + y = \frac{1}{2} \times a \times 4 \times 4$
 $x + y = \frac{1}{2} \times a \times 4 \times 4$
 $x + y = \frac{1}{2} \times a \times 4 \times 4$
 $x + y = 8a$
 $2a + y = 8a$
 $2a + y = 8a$
 $2a + y = 8a$
 $y = 6a$
Given, $y = nx$
 $y = 6a$
Given, $y = nx$
 $y = 7a$
4. A plater moves around the sun in elliptical
orbit. When earth is closest from the sun, ti is at
distance $4r$ from the sun its pred is
 $(a) v(b) (b) (c) (c) (c) (d) v(2)$
RB ALP CHT II Physics & Maths 21 0.12019 Shift III
Ans. (a) : Given that,
 $ar a distance r having a speed v. When it is at a
distance $4r$ from the sun its object if $rom the sun fits pred is
 $(a) v(b) (d) (c) (c) (d) v(2)$
RB ALP CHT II Physics & Maths 21 0.12019 Shift III
Ans. (a) : Given that,
 $ar (a) : Given that,
 $ar (a) : Given that,
 $ar (a) : Given that,
 $ar (a) : Given that,
 $ar (b) : Trom the sun its speed is
 $v_{1} = \frac{1}{2} \times r \times v = \frac{1}{2} \times 4r \times v_{2}$
 $v_{1} = \frac{1}{2}$
 $v_{2} = \frac{1}{2} \times 4r \times v_{2}$
 $v_{1} = \frac{1}{2}$
5. A care moving with a speed of 100
kmbr, the minimum stopping distance is 6
 $ar is given as, u, = 56\frac{km}{m}$ and $u_{1} = 100$ $\frac{km}{b}$
Now,
 $v^{2} = v^{2} - 2aS$
 $s = \frac{u^{2}}{2a}$
 $s \propto u^{2}$
(a) is constant and negative as considering retarding)
 $\therefore \frac{S_{1}}{S} = \frac{(u_{1})^{2}}{(u_{1})^{2}}$
(b) $S = \frac{1}{2} - 220S = \frac{1}{10}$
 $S = \frac{2 \times 20S = \frac{1}{3}} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} =$$$$$$$$

YCT

Ans. (d) (d):Horizontal distance covered is = velocity ×
time
$$R = ut$$

 $R = ut$
 $R = ut$
 $R = ut$
 $raccontrol displacement
 $\Rightarrow h = 0 + \frac{1}{2}gt^2$
 $\Rightarrow h = 0 + \frac{1}{$$

YCT

YCT