ACE SSC ARITHMETIC

for SSC, Railways \& Other Govt Examinations

Latest Edition Includes

- Detailed Concepts \& Exercises for Each Topic
- 3 Level of Exercises with Detailed Solutions
- Includes Previous Years' Questions asked in SSC \& Railway Exams
- Useful for NRA CET as well

2000+ Questions

with Detailed Solutions

CONTENT

1. Number System and Simplification 06

- Type of Questions 11
- Foundation 12
- Moderate 14
- Difficult 15
- Previous Year Questions 17

2. LCM and HCF 30

- Type of Questions 31
- Foundation 32
- Moderate 33
- Difficult 35
- Previous Year Questions 36

3. Surds and Indices 49

- Type of Questions 50
- Foundation 51
- Moderate. 52
- Difficult 54
- Previous Year Questions 56

4. Ratio, Proportion and Partnership 74

- Type of Questions 76
- Foundation 77
- Moderate. 80
- Difficult 83
- Previous Year Questions 84

5. Mixture and Alligation 105

- Type of Questions. 106
- Foundation 107
- Moderate. 109
- Difficult 110
- Previous Year Questions. 112

6. Percentage 127

- Type of Questions 129
- Foundation 130
- Moderate 132
- Difficult 134
- Previous Year Questions 136

7. Profit and Loss 149

- Type of Questions. 151
- Foundation 153
- Moderate. 155
- Difficult 158
- Previous Year Questions. 159

8. Simple Interest and Compound Interest. 176

- Type of Questions 178
- Foundation 180
- Moderate. 182
- Difficult 184
- Previous Year Questions 186

9. Average 203

- Type of Questions 204
- Foundation 205
- Moderate 207
- Difficult 210
- Previous Year Questions. 212

10. Time and Work 225

- Type of Questions 227
- Foundation 232
- Moderate 234
- Difficult 237
- Previous Year Questions 239

11. Pipe and Cistern 262

- Type of Questions 263
- Foundation 266
- Moderate 268
- Difficult 269
- Previous Year Questions 270

12. Speed, Time and Distance 283

- Type of Questions 285
- Foundation 288
- Moderate 290
- Difficult 293
- Previous Year Questions 295

13. Boat and Stream 313

- Type of Questions 314
- Foundation 315
- Moderate 316
- Difficult 317
- Previous Year Questions 319

14. D ata Interpretation 329

- Type of Questions 330
- Foundation 342
- Moderate 347
- Difficult. 352
- Previous Year Questions 356
15 Practice Sets (Based on Latest Pattern)
Practice Set - 01 373
Practice Set - 02 378
Practice Set - 03 382
Practice Set - 04 387
Practice Set - 05 392
Practice Set - 06 397
Practice Set - 07 401
Practice Set - 08 405
Practice Set - 09 409
Practice Set - 10 414
Practice Set - 11 418
Practice Set - 12 423
Practice Set - 13 428
Practice Set - 14 433
Practice Set - 15 437

Number System and Simplifications

Fraction: A ny number that can berepresented in theform of p / q, wherep \& q areintegers \& q is not equal to zero is called a rational number.

Irrational Number \rightarrow Any real number that cannot beexpressed as a ratio of integers, i.e as a fraction.
Example: $\sqrt{5}, \sqrt{8}$
Prime Number: A number which has exactly two factors $1 \&$ itself is called a primenumber.
Primenumbers from 1-100are $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97$ i.e. therearetotal 25 primenumbers up to 100 .

Some results on Prime N umbers:

(i) Up to 100 total primenumbers $=25$
(ii) Up to 50 total primenumbers $=15$
(iii) Sum of two primenumbers is always even except 2 .
(iv) Sum of threeprimenumbers is even if and only if onenumber is 2.
(v) All primenumbers areodd except 2.
(vi) 2 is only even primenumber.
(vii) Each prime number has two factors 1 \& itself so 1 is not primenumber.
(viii) Smallest primenumber of threedigit is 101
(ix) Largest primenumber of threedigit is 997
(x) If square of any primenumber (except 2 and 3) is divided by 24 then remainder is always 1.

Example: $\frac{1}{24} \times\left(11^{2}, 13^{2}, 17^{2}, 19^{2}, 23^{2}\right)=$ (remainder 1 in each case).
Composite N o.: A number which has morethan two factor is compositenumber.
Example:
4, 6, 8, 9 \qquad
N ote: 1 is neither primenor compositenumber, 2 is only even prime number.
Co-PrimeN o.: Thepair of numbers which have no common factor other than onearecalled co-primenumbers.
Example: $(4,5),(15,8)$

Tests of Divisibility:

(i) Divisibility by 2 : A number isdivisibleby 2, if its unit place is any of 0, 2, 4, 6, 8
(ii) Divisibility by 3 : A number is divisibleby 3only when the sum of its digits is divisibleby 3.
(iii) Divisibility by 4 : A number is divisibleby 4 if thenumber formed by its last two digits isdivisible by 4.
(iv) Divisibility by 5 : A number is divisibleby 5 if its unit digit is 5 or 0 .
(v) Divisibility by 6 : A number is divisibleby 6 ifit is divisibleby both $2 \& 3$.
(vi) Divisibility by 8 : A number isdivisibleby 8 when thenumber formed by its last 3 digits isdivisibleby 8.
(vii) Divisibility by 9 : A number isdivisibleby 9 if thesum of its digits isdivisibleby 9.
(viii) Divisibility by 10 : A number is divisibleby 10 only when its unit digit is zero.
(ix) Divisibility by 11 : A number is divisibleby 11, if thedifference of the sum of its digits at odd places \& the sum of its digits at even places is either 0 or a number divisibleby 11.

Some results on division:

(i) $\left(x^{n}-a^{n}\right)$ is divisibleby $(x-a)$ for all valueof n.
(ii) $\left(x^{n}-a^{n}\right)$ is divisibleby $(x+a)$ for even value of n.
(iii) $\left(x^{n}+a^{n}\right)$ is divisibleby $(x+a)$ for odd value of n.

Dividend $=($ Divisor \times Quotient $)+$ Remainder

Some Results on Numbers:

(i) Theproduct of four numbers which are consecutive natural numbers is al ways divisibleby 24 .

Example: $\frac{101 \times 102 \times 103 \times 104}{24}$ or $\frac{7 \times 8 \times 9 \times 10}{24}$
(ii) Thedifference of squareof two consecutivenatural numbers is al ways equal to sum of those numbers.

Example: $9^{2}-8^{2}=9+8, \quad 119^{2}-118^{2}=119+118$
(iii) Thedifference of squareof two consecutiveodd numbers is al ways divisibleby 8.

Example: $11^{2}-9^{2}=121-81=40$

$$
\frac{40}{8}=5 .
$$

(iv) The difference of squareof two consecutive even numbers is always divisibly by 4.

Example: $10^{2}-8^{2}=100-64=36$

$$
\frac{36}{4}=9
$$

(v) Any digit repeated 6 times isdivisibleby $7,11,13 \& 37$.

Example: 555555 or 222222
aredivisibleby $7,11,13 \& 37$.
(vi) A ny two digit number repeated 2 times is al ways divisible by 101.

Example: 3434 or 5656 is divisibleby 101.
(vii) If P is primenumber \& a is an integer then $\left(a^{P}-a\right)$ is always divisibleby P.

Example: ($5^{11}-5$) is divisibleby 11.
(viii) If n is an odd number then $\left(2^{2 n}+1\right)$ is al ways divisibleby 5 .
(ix) If n is an even number, then $\left(2^{2 n}-1\right)$ is al ways divisible by 5 .
(x) Theproduct of threeconsecutive natural numbers is always divisible by 6.

Example: $\frac{1}{6} \times(8 \times 9 \times 10)$ or $\frac{1}{6} \times(11 \times 12 \times 13)$
(xi) Theproduct of threeconsecutivenatural numbers starting with even number is al ways divisible by 24.

Example: $\begin{gathered}\frac{1}{24} \times(8 \times 9 \times 10) \\ \downarrow \\ \text { even }\end{gathered}$
(xii) Any number written in theform $9\left(10^{n}-1\right)$ is always divisibleby $3 \& 9$ both.
(xiii) A ny natural number of theform $\left(n^{3}-n\right)$ isalways divisibleby 6.

Unitdigit : $3^{4}=81=1 \quad$ i.e. 1 is unit digit
$3215 \times 5163 \times 7298$
product of unit digits $=5 \times 3 \times 8=120$, i.e. unit digit is zero.
Theunit digit of thenumbers in following forms is:

$5^{n}=5$	$4^{\text {odd }}=4$	$9^{\text {odd }}=9$
$6^{n}=6$	$4^{\text {even }}=6$	$9^{\text {even }}=1$
$0^{n}=0$		
$1^{n}=1$		

Example:

(i) $234^{567}+566^{133}$
Unit digit $=4+6=10=0$
(ii) $249^{33}+250^{34}+251^{35}$
unit digit $=9+0+1=10=0$

Remainingdigit: (2,3,7,8)

- $212^{79} \Rightarrow 2^{79 / 4}=2^{3}=8$
- $378^{41925} \Rightarrow 8^{25 / 4}=8^{1}=8$
- $473^{2188} \Rightarrow 3^{88 / 4}=3^{4}=81=1$
- In caseremainder is zero, then power would be4

Example: $214^{2164} \Rightarrow 4^{64 / 4}=4^{4}=256=6$

Testing of prime numbers

- Test whether 191 is prime or not

Clearly $14>\sqrt{191}$
Primenumbers up to 14 are $2,3,5,7,11,13$
No one of thesedivides 191 exactly
$\therefore 191$ is a prime number.
(i) Sum of n natural numbers

$$
1+2+3+\ldots \ldots \ldots \ldots .+n=\frac{n(n+1)}{2}
$$

(iii) Sum of cubeof n natural numbers

$$
1^{3}+2^{3}+3^{3}+\ldots \ldots . \ldots \ldots \ldots . . n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

Odd number: Thosenumbers which arenot divisibleby 2, areknown as odd numbers
Example: 1, 3, 5, 7,
$\mathrm{n}=\frac{\mathrm{t}_{\mathrm{n}}+1}{2}, \quad$ wheren $=$ total number of term, $\mathrm{t}_{\mathrm{n}}=$ last term.
Sum of $\mathrm{It}^{\mathrm{tt}} \mathrm{n}$ odd numbers $=\mathrm{n}^{2}$
Example: $1+3+5+$ \qquad $+49$

$$
\begin{aligned}
n=\frac{49+1}{2} & \left.=25, \quad \text { sum }=(25)^{2} \quad \text { (since, } n=25\right) \\
& =625
\end{aligned}
$$

Example: Find thesum of theseries

$$
51+53+
$$

\qquad +99
$=\frac{\left(\text { Last term }+I^{5 t} \text { term }\right) \times\left(\text { Last term }- \text { Pr evious term of } I^{\text {st }} \text { term }\right)}{4}=\frac{(99+51)(99-49)}{4}=\frac{150 \times 50}{4}=1875$

Even N umbers: Those numbers which aredivisibleby 2 areknown as even numbers.
Example: 2, 4, 6, 8, \qquad

$$
\begin{aligned}
& n=\frac{t_{n}}{2}, \text { Wheren }=\text { total numbers of term, } t_{n}=\text { last term } \\
& \text { sum of } I^{\text {st }} \mathrm{n} \text { even numbers }=\mathrm{n}(\mathrm{n}+1) \\
& 2+4+6+\ldots+58
\end{aligned}
$$

Example: $2+4+6+$

$$
n=\frac{58}{2}=29, \quad \operatorname{sum}=n(n+1)=29(29+1)=870
$$

Remainder Theorem:

1. When $a_{1}, a_{2}, a_{3} \ldots . . a_{n}$ aredivided by 'd' individually therespectiveremainders are $R_{1}, R_{2}, R_{3} \ldots . R_{n}$ and when $\left(a_{1}+a_{2}+\right.$ $\left.a_{3} \ldots a_{n}\right)$ is divided by ' d ' theremainder can be obtained by dividing ($\left.R_{1}+R_{2}+R_{3} \ldots . . R_{n}\right)$ by ' d '
Example: Find remainder when $38+71+85$ is divided by 16

$$
=\frac{38+71+85}{16}=\frac{6+7+5}{16}
$$

(Remainder obtained when numbers are individually divided by 16)

$$
=\frac{18}{16} \Rightarrow \text { Remainder }=2
$$

2. When $a_{1}, a_{2}, a_{3} \ldots a_{n}$ are divided by a divisor d the respective remainders obtained are $R_{1}, R_{2}, R_{3} \ldots . . R_{n}$, and the remainder when ($a_{1} \times a_{2} \times a_{3} \ldots \times a_{n}$) is divided by 'd' can be obtained by dividing ($\left.R_{1} \times R_{2} \nsucc R_{3} \ldots R_{n}\right)$ by d.
Example: Find Remainder when 7 isdivided by 4 .

$$
\begin{aligned}
& \frac{7^{7}}{4}=\frac{7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7}{4}=\frac{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}{4} \text { (Remainder obtained individually) } \\
& \\
& \quad=\frac{9 \times 9 \times 9 \times 3}{4}=\frac{1 \times 1 \times 1 \times 3}{4} \Rightarrow \quad \text { Remainder }=3 \\
& \text { So we can say that remainders can be added as well as multiplied. }
\end{aligned}
$$

Some results on remainder

- For $\frac{\mathrm{nx}}{\mathrm{n}}$, Remainder $=0 \quad$ - For $\frac{(\mathrm{nx}+1)^{\mathrm{n}}}{\mathrm{n}}$, Remainder $=1$
- For $\frac{(\mathrm{nx}-1)^{\text {even }}}{\mathrm{n}}$, Remainder $=1 \bullet \quad$ For $\frac{(\mathrm{nx}-1)^{\text {odd }}}{\mathrm{n}}$, Remainder $=-1$ or $(\mathrm{n}-1)$

Where x and n areany positive integers.
Recurring D ecimal : A decimal number in which a digit or a set of digits repeats regularly, over a constant period, is called a recurring decimal.
Example : 2.3333..... , 7.5555.... , 1.3333.... they arerepresented as $2 . \overline{3}, 7 . \overline{5}, 1 . \overline{3}$
(i) Pure Recurring decimal : A decimal fraction in which all the figures occur repeatedly is called a pure recurring decimal e.g 7.4444.... , 2.1111.... , 3.4545...
(ii) Mixed Recurring decimal : A decimal number in which some of the digits do not recur is called a mixed recurring decimal e.g. 0.1777, .087373...
(iii) Non recurring decimal : A decimal number in which thereis no regular pattern of repitition of digits after decimal point is called non-recurring decimal e.g. 3.24662676...

Fraction : The word fraction means a part of anything. It can beexpressed in thefrom of $\frac{p}{q}$ wherep and q are integers and ' q ' is not equal to ' 0 '.
Proper fraction : When the numerator is less than thedenominator, then the fraction is called a proper fraction.
Example: $\frac{7}{12}, \frac{5}{17}, \frac{12}{43}$ etc.
Improper fraction : When the numerator is greater than the denominator, then the fraction is called an improper fraction.

Example: $\frac{17}{13}, \frac{18}{14}, \frac{45}{19}$ etc.
Like fraction : Fractions having samedenominator are called likefractions.
Example: $\frac{1}{9}, \frac{5}{9}, \frac{7}{9}$ etc.
Unlike fraction : Fractions having different denominators arecalled unlikefractions.
Example: $\frac{14}{23}, \frac{17}{43}, \frac{53}{19}$ etc.
Compound fraction : It is a fraction of afraction.
Example: $\frac{1}{3}$ of $\frac{5}{9}, \frac{7}{9}$ of $\frac{61}{53}, \frac{9}{13}$ of $\frac{7}{19}$
Complex fraction : In such afraction, both the numerator and thedenominator arefractions.
Example: $\frac{12}{12}$

$$
\begin{array}{ll}
\frac{12}{13} \\
\frac{17}{21} & \frac{5}{17}+\frac{13}{72} \\
\frac{74}{43}+\frac{7}{9}
\end{array}
$$

Mixed fraction : Those fractions which consist of a whole number and a proper fraction, are known as mixed fractions.

Example: $5 \frac{7}{8}, 7 \frac{4}{9}, 12 \frac{13}{17}$ etc.
Continued fraction : It contains an additional fraction in thenumerator or in the denominator.
Example: $12+\frac{1}{12+\frac{14}{65+\frac{2}{3}}}$
D ecimal faction : In such a fraction, the denominator has power of 10 .
Example: $0.45=\frac{45}{100}, 0.7=\frac{7}{10}, 0.000071=\frac{71}{1000000}$ etc.

Types of Questions

1. A number when divided by 91 gives a remainder 17 . When the same no is divided by 13 , the remainder will be

Sol. $\frac{17}{13}=4$ remainder
2. $\left(4^{61}+4^{62}+4^{63}\right)$ is divisibleby:

Sol. $4^{61}\left(1+4+4^{2}\right)=4^{61} \times 21$
i.e. 21 is divisibleby 3
3. Find thenumber of zeros in theproduct of $1 \times 2 \times 3 \times$ $\times 99 \times 100$.

Sol. $\frac{100}{5}=20$ and $\frac{20}{5}=4$
i.e. total numbers of zeros $=20+4=24$
4. Find thetotal number of zeros in the product of 1×2 $\times 3 \times$ \qquad $\times 250$.

Sol. $\frac{250}{5}=50, \frac{50}{5}=10$ and $\frac{10}{5}=2$ i.e. total numbers of zeros $=50+10+2=62$
5. Find the total number of zeros in theproduct of $51 \times$ $52 \times 53 \times$. \qquad $\times 100$.
Sol. $\frac{100}{5}=20, \quad \frac{20}{5}=4$
and, $\frac{50}{5}=10, \frac{10}{5}=2$
So, total number of zeros $=(20+4)-(10+2)=12$
6. Find the remainder in thefollowing questions
(i) $\frac{5^{37}}{8}$
(ii) $\frac{2^{75}}{5}$
(iii) $\frac{517^{517}}{2}$
(iv) $\frac{2243^{165}}{5}$
(v) $\frac{7^{129}}{5}$
(vi) $\frac{8^{123}}{9}$
(vii) $\frac{2^{76}}{9}$
(viii) $\frac{19^{20}+19^{40}}{20}$
(ix) $\frac{4^{75}+4^{76}}{17}$
(x) $\frac{517^{517}}{5}$

Sol. (i) $\quad \frac{5^{37}}{8} \Rightarrow \frac{\left(5^{2}\right)^{18} \times 5^{1}}{8}=\frac{25^{18} \times 5}{8}=\frac{1^{18} \times 5}{8}=5$
(ii) $\frac{2^{75}}{5} \Rightarrow \frac{\left(2^{4}\right)^{18} \times 2^{3}}{5}=\frac{16^{18} \times 8}{5}=\frac{(1)^{18} \times 8}{5}=3$
(iii) $\frac{517^{517}}{2} \Rightarrow \frac{1^{517}}{2}=1$
(iv) $\frac{2243^{165}}{5} \Rightarrow \frac{3^{165}}{5}=\frac{\left(3^{4}\right)^{41} \times 3^{1}}{5}=3$
(v) $\frac{7^{129}}{5} \Rightarrow \frac{2^{129}}{5}=\frac{\left(2^{4}\right)^{32} \times 2}{5}=2$
(vi) $\frac{8^{123}}{9} \Rightarrow \frac{(-1)^{123}}{9}=9-1=8$
(vii) $\frac{2^{76}}{9} \Rightarrow \frac{\left(2^{3}\right)^{25} \times 2}{9}=\frac{(-1)^{25} \times 2}{9}=\frac{-2}{9}=7$
(viii) $\frac{19^{20}+19^{40}}{20} \Rightarrow \frac{(-1)^{20}+(-1)^{40}}{20}=\frac{2}{20}=2$
(ix) $\frac{4^{75}+4^{76}}{17} \Rightarrow \frac{\left(4^{2}\right)^{37} \times 4+\left(4^{2}\right)^{38}}{17}$
$=\frac{(-1)^{37} \times 4+(-1)^{38}}{17}=\frac{-1 \times 4+1}{17}=\frac{-3}{17}=14$
(x) $\quad \frac{517^{517}}{5} \Rightarrow \frac{2^{517}}{5}=\frac{\left(2^{4}\right)^{129} \times 2^{1}}{5}=\frac{1^{129} \times 2}{5}=2$
7. Find theunit digit in the following questions.
(i) $(124)^{372}+(124)^{373}$
(ii) $(4387)^{245}+(621)^{72}$
(iii) $25^{6221}+36^{528}+73^{54}$
(iv) $7^{11} \times 6^{63} \times 3^{65}$
(v) $(251)^{98}+(21)^{29}-(106)^{100}+(705)^{35}-16^{4}+259$

Sol. (i) $\quad(124)^{372}+(124)^{373}=6+4$
\Rightarrow unit digit $=0$
(ii) $(4387)^{245}+(621)^{72}=(7)^{1}+(1)^{72}=7+1$ $=8$ (unit digit).
(iii) $25^{6521}+36^{528}+73^{54}=5+6+(3)^{2}=5+6+9=20$ \therefore unit digit $=0$
(iv) $7^{71} \times 6^{63} \times 3^{65}$
$=7^{3} \times 6^{3} \times 3^{1}=3 \times 6 \times 3$
$=4$ (unitdigit)
(v) $(251)^{98}+(21)^{29}-(106)^{100}+(705)^{35}-16^{4}+259$
$=1+1-6+5-6+9=16-12$
$=4$ (unit digit)

Foundation

Questions

1. The sum of all those prime numbers which are less than 31 is
(a) 119
(b) 129
(c) 132
(d) 137
2. The sum of all even numbers between 21 and 51 is
(a) 518
(b) 540
(c) 560
(d) 596
3. Which of the followingisoneof thefactors of thesum of first 25 natural numbers
(a) 26
(b) 24
(c) 13
(d) 12
4. Thedigit in the unit place of the product $(2464)^{1793} \times(615)^{317} \times(131)^{491}$ is
(a) 0
(b) 2
(c) 3
(d) 5
5. Thedigit in the unit place of
$\left[(251)^{98}+(21)^{29}-(106)^{100}+(705)^{35}\right]$ is
(a) 1
(b) 4
(c) 5
(d) 6
6. Find the remainder valuein thefollowing expression $\frac{\left(23^{2}+29^{2}+31^{2}+37^{2}\right)}{24}$
(a) 13
(b) 17
(c) 4
(d) 3
7. Find thevalue of given series
$1-2+3-4+5-6+$ \qquad $+95-96+97-98$
(a) 49
(b) 53
(c) -49
(d) -53
8. Find thetotal number of zeros in thefollowing series $2 \times 4 \times 6 \times$ \qquad $\times 248 \times 250$
(a) 31
(b) 37
(c) 39
(d) 43
9. $101 \times 102 \times 103 \times 104$ is a number which is always divisibleby thegreatest number in thegiven option.
(a) 6
(b) 24
(c) 48
(d) 16
10. Find thenumber of total primenumbers up to 100
(a) 27
(b) 23
(c) 25
(d) 26
11. When two numbers areseparately divided by 33 , the remainders are 21 and 28 respectively. If thesum of thetwo numbers isdivided by 33 , theremai nder will be
(a) 10
(b) 12
(c) 14
(d) 16
12. In a question of division, the divisor is 7 times the quotient and 3 times the remainder. If remainder is 28 , then thedividend is
(a) 588
(b) 784
(c) 823
(d) 1036
13. If 17^{200} is divided by 18 , theremainder is
(a) 17
(b) 16
(c) 1
(d) 2
14. Which of the following numbersis not divisibleby 18
(a) 54036
(b) 50436
(c) 34056
(d) 65043
15. It is given that $\left(2^{32}+1\right)$ is exactly divisibleby a certain number. Which oneof thefollowing is also definitely divisibleby thesamenumber.
(a) $2^{96}+1$
(b) 7×2^{33}
(c) $2^{16}-1$
(d) $2^{16}+1$
16. Theleast number among $\frac{4}{9}, \sqrt{\frac{9}{49}}, 0.45$ and $(0.8)^{2}$ is
(a) $\frac{4}{9}$
(b) $\sqrt{\frac{9}{49}}$
(c) 0.45
(d) $(0.8)^{2}$
17. Thenumber $0.121212 \ldots$ in the form $\frac{p}{q}$ is equal to
(a) $\frac{4}{11}$
(b) $\frac{2}{11}$
(c) $\frac{4}{33}$
(d) $\frac{2}{33}$
18. Theleast among thefraction $\frac{15}{16}, \frac{19}{20}, \frac{24}{25}, \frac{34}{35}$ is
(a) $\frac{34}{35}$
(b) $\frac{15}{16}$
(c) $\frac{19}{20}$
(d) $\frac{24}{25}$
19. If $1^{3}+2^{3}+\ldots+9^{3}=2025$, then the value of $(0.11)^{3}+(0.22)^{3}+\ldots+(0.99)^{3}$ is close to
(a) 0.2695
(b) 2.695
(c) 3.695
(d) 0.3695
20. Which of thefollowing number is thegreatestamong all?
$0.9,0 . \overline{9}, 0.0 \overline{9}, 0 . \overline{09}$
(a) 0.9
(b) $0 . \overline{9}$
(c) $0.0 \overline{9}$
(d) $0 . \overline{09}$
21. How many natural numbers divisibleby 7 arethere between 3 and 200?
(a) 27
(b) 28
(c) 29
(d) 36

22 Thesum of threeconsecutive odd natural numbers is 87. The smal lest of these numbers is
(a) 29
(b) 31
(c) 23
(d) 27
23. What will be the unit digit in 7^{105} ?
(a) 5
(b) 7
(c) 9
(d) 1
24. Which one of the following will completely divide $5^{71}+5^{72}+5^{73}$?
(a) 150
(b) 160
(c) 155
(d) 30
25. When 2^{33} is divided by 10 , theremainder will be
(a) 2
(b) 3
(c) 4
(d) 8
26. When a number is divided by 24 , theremainder is 16 . The remainder when thesamenumber is divided by 12 is
(a) 3
(b) 4
(c) 6
(d) 8
27. The remainder when 3^{21} is divided by 5 is
(a) 1
(b) 2
(c) 3
(d) 4
28. A 4-digit number is formed by repeating a 2-digit number such as 1515,3737 , etc. Any number of this form is exactly divisibleby
(a) 7
(b) 11
(c) 13
(d) 101
29. How many numbers less than 1000 are multiples of both 10 and 13 ?
(a) 9
(b) 8
(c) 6
(d) 7
30. What number should bedivided by $\sqrt{0.25}$ to givethe result as 25?
(a) 25
(b) 50
(c) 12.5
(d) 125
31. The smallest number that must be added to 803642 in order to obtain a multiple of 11 is
(a) 1
(b) 4
(c) 7
(d) 9

32 1008should bedivided by which singledigit number to get a perfect square?
(a) 9
(b) 4
(c) 8
(d) 7
33. $\left(1^{2}+2^{2}+3^{2}+\ldots+10^{2}\right)$ is equal to
(a) 380
(b) 385
(c) 390
(d) 392
34. Given that $1^{2}+2^{2}+3^{2}+\ldots \ldots .+n^{2}=\frac{n}{6}(n+1)(2 n+1)$, then, $10^{2}+11^{2}+12^{2}+\ldots \ldots+20^{2}$ is equal to
(a) 2616
(b) 2585
(c) 3747
(d) 2555
35. The largest natural number, which exactly divides theproduct of any four consecutivenatural numbers, is
(a) 6
(b) 12
(c) 24
(d) 120
36. If $1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}=441$. Then find the value of $2^{3}+4^{3}+6^{3}+8^{3}+10^{3}+12^{3}$
(a) 882
(b) 1323
(c) 1764
(d) 3528
37. Thegreatest fraction among $\frac{2}{3}, \frac{5}{6}, \frac{11}{15}$ and $\frac{7}{8}$ is
(a) $\frac{7}{8}$
(b) $\frac{11}{15}$
(c) $\frac{5}{6}$
(d) $\frac{2}{3}$
38. $0.4 \overline{23}$ is equivalent to thefraction
(a) $\frac{491}{990}$
(b) $\frac{419}{990}$
(c) $\frac{49}{99}$
(d) $\frac{94}{99}$
39. 0.393939 is equal to
(a) $\frac{39}{100}$
(b) $\frac{13}{33}$
(c) $\frac{93}{100}$
(d) $\frac{39}{990}$
40. If onethird of onefourth of a number is 15 , then three tenth of the number is
(a) 35
(b) 36
(c) 45
(d) 54

Moderate

1. Which is the largest of the following fractions? $\frac{2}{3}, \frac{3}{5}, \frac{8}{11}, \frac{7}{9}, \frac{11}{17}$
(a) $\frac{2}{3}$
(b) $\frac{11}{17}$
(c) $\frac{7}{9}$
(d) $\frac{3}{5}$

2 Which one of thegroup is in descendingorder?
(a) $\frac{7}{12}, \frac{9}{17}, \frac{13}{24}$
(b) $\frac{13}{24}, \frac{9}{17}, \frac{7}{12}$
(c) $\frac{9}{17}, \frac{13}{24}, \frac{7}{12}$
(d) $\frac{7}{12}, \frac{13}{24}, \frac{9}{17}$
3. $1 \frac{1}{2}+11 \frac{1}{2}+111 \frac{1}{2}+1111 \frac{1}{2}+11111 \frac{1}{2}=$?
(a) $12347 \frac{1}{2}$
(b) $12346 \frac{1}{2}$
(c) $12345 \frac{1}{2}$
(d) $12344 \frac{1}{2}$
4. $3 \frac{1}{3}+33 \frac{1}{3}+333 \frac{1}{3}+3333 \frac{1}{3}+33333 \frac{1}{3}=$?
(a) $37031 \frac{2}{3}$
(b) $37037 \frac{1}{3}$
(c) $37036 \frac{2}{3}$
(d) $37032 \frac{1}{3}$
5. $\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}=$?
(a) $\frac{5}{18}$
(b) $\frac{7}{18}$
(c) $\frac{11}{18}$
(d) $\frac{13}{18}$
6. $\frac{1}{5 \times 9}+\frac{1}{9 \times 13}+\frac{1}{13 \times 17}+\ldots \ldots \cdot \frac{1}{61 \times 65}=$?
(a) $\frac{4}{45}$
(b) $\frac{3}{65}$
(c) $\frac{2}{35}$
(d) $\frac{3}{35}$
7. If $\frac{3}{2+\frac{2}{2+\frac{2}{2+\frac{2}{3}}}}=x$, then find the valueof x.
(a) 3.3
(b) 2.2
(c) 1.1
(d) 4.4
8. If $x+\frac{1}{2+\frac{1}{3+\frac{1}{4+\frac{1}{5}}}}=12$, then find the value of x.
(a) $\frac{1816}{157}$
(b) $\frac{2012}{153}$
(c) $\frac{1818}{151}$
(d) $\frac{1818}{157}$
9. Find thevalueof $5 . \overline{12}+3 . \overline{21}+4 . \overline{31}=$?
(a) $12 \frac{64}{99}$
(b) $12 \frac{74}{99}$
(c) $12 \frac{77}{99}$
(d) $12 \frac{84}{99}$
10. Thedifferenceof $5 . \overline{76}$ and $2 . \overline{3}$ is.
(a) $3 . \overline{54}$
(b) $3 . \overline{73}$
(c) $3 . \overline{46}$
(d) $3 . \overline{43}$
11. If x is a prime number and $-1 \leq \frac{2 x-7}{5} \leq 1$, then the number of values of x is:
(a) 4
(b) 3
(c) 2
(d) 5

12 The sum of a natural number and its square equals the product of the first three prime numbers. The number is:
(a) 2
(b) 3
(c) 5
(d) 6
13. Therational number between $\frac{1}{2}$ and $\frac{3}{5}$ is:
(a) $\frac{2}{5}$
(b) $\frac{4}{7}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$
14. What is the sum of two consecutive even numbers, thedifference of whose square is 84 ?
(a) 38
(b) 34
(c) 42
(d) 46
15. Thesum of all thenatural numbers from 50 to 100 is:
(a) 5050
(b) 4275
(c) 4025
(d) 4005
16. The last digit of $(1001)^{2008}+1002$ is:
(a) 0
(b) 3
(c) 4
(d) 6
17. The unit digit in the product $7^{71} \times 6^{63} \times 3^{65}$ is:
(a) 1
(b) 2
(c) 3
(d) 4
18. Unit's digit of thenumber (22) ${ }^{23}$ is:
(a) 4
(b) 6
(c) 8
(d) 2
19. The digit in unit's place of the product $(2153)^{167}$ is:
(a) 1
(b) 3
(c) 7
(d) 9
20. If the sum of the digits of any integer lying between 100and 1000 is subtracted from thenumber, the result always is:
(a) divisibleby 2
(b) divisibleby 9
(c) divisibleby 5
(d) divisibleby 6
21. In a division, thedivisor is 10times thequotient and 5 times theremainder. If theremainder is 46 , then the dividend is:
(a) 4236
(b) 4306
(c) 4336
(d) 5336
22. If a and b aretwo odd positiveintegers, by which of thefollowing integers is $\left(a^{4}-b^{4}\right)$ always divisible.
(a) 3
(b) 6
(c) 8
(d) 12
23. A number, when divided by 136 , leaves remainder 36. If thesamenumber is divided by 17 , theremainder will be:
(a) 9
(b) 7
(c) 3
(d) 2
24. A number, when divided by 899, leaves remainder 63. What will betheremainder if the samenumber is divided by 29 ?
(a) 3
(b) 1
(c) 5
(d) 0
25. Thegreatest fraction among $\frac{2}{3}, \frac{5}{6}, \frac{11}{15}$ and $\frac{7}{8}$ is:
(a) $\frac{7}{8}$
(b) $\frac{11}{15}$
(c) $\frac{5}{6}$
(d) $\frac{2}{3}$
26. If $\left(67^{67}+67\right)$ is divided by 68 . Then, theremainder is
(a) 1
(b) 67
(c) 63
(d) 66
27. $\left[2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}\right]$ is equal to
(a) 385
(b) 2916
(c) 540
(d) 384
28. If $1^{3}+2^{3}+\ldots+10^{3}=3025$. Then, $4+32+108+\ldots+$ 4000 is equal to
(a) 12000
(b) 12100
(c) 12200
(d) 12400
29. Which of thefollowing fractions is the smallest?
(a) $\frac{7}{6}$
(b) $\frac{7}{9}$
(c) $\frac{4}{5}$
(d) $\frac{5}{7}$
30. $0 . \overline{001}$ is equal to
(a) $\frac{1}{1000}$
(b) $\frac{1}{999}$
(c) $\frac{1}{99}$
(d) $\frac{1}{9}$

Difficult

1. The sum of the squares of three consecutive natural numbers is 2030. Then, what is the middlenumber?
(a) 25
(b) 26
(c) 27
(d) 28

2 In a division, thedivisor is 10times thequotient and 5 times the remainder. If theremainder is 40 , then the dividend is
(a) 240
(b) 440
(c) 4040
(d) 4000
3. If m and n arepositiveintegers and $(m-n)$ is an even number, then $\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right)$ will be always divisibleby
(a) 4
(b) 6
(c) 8
(d) 12
4. Both the ends of a 99 digits number N are $2 . \mathrm{N}$ is divisibleby 11 , then all themiddledigits are
(a) 1
(b) 2
(c) 3
(d) 4
5. Thelast 5 digits of thefollowing expression will be
$(1!)^{5}+(2!)^{4}+(3!)^{3}+(4!)^{2}+(5!)^{1}+(10!)^{5}$ $+(100!)^{4}+(1000!)^{3}+(10000!)^{2}+(100000!)$
(a) 45939
(b) 00929
(c) 20929
(d) can't bedetermined
6. What fraction of $\frac{4}{7}$ must be added to itself to make thesum $1 \frac{1}{14}$?
(a) $\frac{7}{8}$
(b) $\frac{1}{2}$
(c) $\frac{4}{7}$
(d) $\frac{15}{14}$
7. Find the sum of thefirst five terms of the following series $\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\frac{1}{7 \times 10}+\ldots+\frac{1}{13 \times 16}$
(a) $\frac{9}{32}$
(b) $\frac{7}{16}$
(c) $\frac{5}{16}$
(d) $\frac{1}{210}$
8. Thesum $\left(5^{3}+6^{3}+\ldots+10^{3}\right)$ is equal to
(a) 2295
(b) 2425
(c) 2495
(d) 2925
9. If $\left(10^{12}+25\right)^{2}-\left(10^{12}-25\right)^{2}=10^{n}$, then the value of n is
(a) 20
(b) 14
(c) 10
(d) 5
10. Thevalue of $\frac{3}{1^{2} \cdot 2^{2}}+\frac{5}{2^{2} \cdot 3^{2}}+\frac{7}{3^{2} \cdot 4^{2}}+\frac{9}{4^{2} \cdot 5^{2}}+\frac{11}{5^{2} \cdot 6^{2}}+\frac{13}{6^{2} \cdot 7^{2}}$ $+\frac{15}{7^{2} \cdot 8^{2}}+\frac{17}{8^{2} \cdot 9^{2}}+\frac{19}{9^{2} \cdot 10^{2}}$ is
(a) $\frac{1}{100}$
(b) $\frac{99}{100}$
(c) $\frac{101}{100}$
(d) 1
11. $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}$ isequal to
(a) 1
(b) 5
(c) 9
(d) 10

12 When simplified, thesum $\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\ldots+\frac{1}{n(n+1)}$ is equal to
(a) $\frac{1}{\mathrm{n}}$
(b) $\frac{1}{n+1}$
(c) $\frac{2(n-1)}{n}$
(d) $\frac{n}{n+1}$
13. If $1^{2}+2^{2}+3^{2}+\ldots+x^{2}=\frac{x(x+1)(2 x+1)}{6}$, then $1^{2}+3^{2}+5^{2}+\ldots+19^{2}$ is equal to
(a) 1330
(b) 2100
(c) 2485
(d) 2500
14. ($1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots+9^{2}-10^{2}$) is equal to
(a) -55
(b) 55
(c) -56
(d) 56
15. The sum of thefirst 20 terms of theseries $\frac{1}{5 \times 6}+\frac{1}{6 \times 7}+\frac{1}{7 \times 8}+\ldots$ is
(a) 0.16
(b) 1.6
(c) 16
(d) 0.016
16. A divisor is 25 times the quotient and 5 times the remainder. Thequotient is 16 , thedividend is
(a) 6400
(b) 6480
(c) 400
(d) 480
17. Given that $3.718=\frac{1}{0.2689}$. Then, $\frac{1}{0.0003718}$ isequal to
(a) 2689
(b) 2.689
(c) 26890
(d) 0.2689
18. Largest four digit number which when divided by 15 leaves a remainder of 12 and if the same number is divided by 8 it leaves theremainder 5 . Such greatest possiblenumber is:
(a) 9963
(b) 9957
(c) 9945
(d) 9999
19. Number of zeros at the end of the following expression $(5!)^{5!}+(10!)^{10!}+(50!)^{50!}+(100!)^{100!}$ is:
(a) 165
(b) 120
(c) 125
(d) N oneof these
20. A fraction in its lowest form is such that when it is squared and then its numerator is reduced by $\frac{1}{3}$ rd and denominator is reduced to $\frac{1}{5}$ th , itresults as twice of the original fraction. Then the sum of numerator and denominator can be:
(a) 7
(b) 8
(c) 9
(d) 17
21. Thevalue of theexpression
$7777+7777 \times 7777 \times(5 \div 77) \times(11 \div 35)$:
(a) 1234321
(b) 12344321
(c) 7^{7777}
(d) Noneof these

22 Find thelast digit of $32^{32^{32}}$.
(a) 6
(b) 8
(c) 10
(d) 4
23. Find the last digit of $222^{288}+888222$.
(a) 8
(b) 4
(c) 0
(d) 6
24. Find the unit di git of 111 ! (fractorial 111).
(a) 0
(b) 2
(c) 3
(d) 4
25. Which is not the factor of $4^{6 n}-6^{4 n}$ for any positive integer n ?
(a) 5
(b) 25
(c) 7
(d) Noneof these
26. $19^{n}-1$ is:
(a) alwaysdivisibleby 9
(b) always divisibleby 20
(c) isnever divisibleby 19
(d) only (a) and (c) are true
27. Find the remainder when $10^{1}+10^{2}+10^{3}+10^{4}+10^{5}+$ $\ldots+10^{99}$ is divided by 6 .
(a) 0
(b) 4
(c) 2
(d) 6
28. A number when divided by 5 gives a number which is 8 more than the remainder obtained on dividing the samenumber by 34 . Such a least possible number is:
(a) 175
(b) 75
(c) 680
(d) doesnot exist
29. Total number of factors of a number is 24 and the sum of its 3 primefactors out of four, is 25 . Theproduct of all 4 primefactors of this number is 1365. Then such a greatest possible number can be:
(a) 17745
(b) 28561
(c) 4095
(d) can't bedetermined
30. How many numbers are therein the set $S=\{200,201$, 202, ..., 800\}which are divisibleby neither 5 nor 7 ?
(a) 411
(b) 412
(c) 410
(d) Noneof these

Previous Year Questions

1. I multiplied a natural number by 18 and another by 21 and added the products. Which one of the following could bethesum?
(a) 2007
(b) 2008
(c) 2006
(d) 2002

2 Out of six consecutivenatural numbers, if thesum of first three is 27 , what is the sum of the other three?
(a) 36
(b) 35
(c) 25
(d) 24
3. Which one of the following is a factor of thesum of first 25 natural numbers?
(a) 26
(b) 24
(c) 13
(d) 12
4. The sum of all thenatural numbers from 51 to 100 is
(a) 5050
(b) 4275
(c) 4025
(d) 3775
5. The unit digit in the sum of $(124)^{376}+(124)^{335}$ is
(a) 5
(b) 4
(c) 2
(d) 0
6. The unit digit of the expression $25^{6527}+36^{526}+73^{54}$ is
(a) 6
(b) 5
(c) 4
(d) 0
7. Thedigit in the unit place of $\left[(251)^{98}+(21)^{29}-(106)^{100}\right.$ $\left.+(705)^{35}-16^{4}+259\right]$ is
(a) 1
(b) 4
(c) 5
(d) 6
8. If n is even, $\left(6^{n}-1\right)$ is divisibleby
(a) 37
(b) 35
(c) 30
(d) 6
9. 'a' divides 228 leaving a remainder 18. The biggest two digit value of 'a' is
(a) 21
(b) 35
(c) 30
(d) 70
10. $2^{16}-1$ is divisibleby
(a) 11
(b) 13
(c) 17
(d) 19
11. A certain number when divided by 175 leaves a remainder 132. When thesamenumber is divided by 25 , theremainder is
(a) 6
(b) 7
(c) 8
(d) 9
$12\left(4^{61}+4^{62}+4^{63}\right)$ is divisible by
(a) 3
(b) 11
(c) 13
(d) 17
13. Thedigit in the unit place of theproduct $(2464)^{1793} \times(615)^{317} \times(131)^{491}$ is
(a) 0
(b) 2
(c) 3
(d) 5
14. $\left(2^{71}+2^{72}+2^{73}+2^{74}\right)$ is divisibleby
(a) 9
(b) 10
(c) 11
(d) 13
15. In adivision problem, thedivisor is 4 times thequotient and 3 times the remainder. If remainder is 4 , the dividend is
(a) 36
(b) 40
(c) 12
(d) 30
16. If anumber is divisibleby both 11 and 13 , then it must benecessarily
(a) divisibleby $(11+13)$
(b) divisibleby $(13-11)$
(c) divisibleby (11×13)
(d) 429
17. A common factor of $\left(13^{7}+11^{7}\right)$ and $\left(13^{5}+11^{5}\right)$ is
(a) 24
(b) $13^{5}+11^{5}$
(c) $13^{2}+11^{2}$
(d) Noneof these
18. Sum of threeconsecutiveeven integers is 54 . Find the least among them.
(a) 18
(b) 15
(c) 14
(d) 16
19. The unit digit in theproduct (122) ${ }^{173}$ is
(a) 2
(b) 4
(c) 6
(d) 8
20. What least number of 5 digits is divisible by 41 ?
(a) 10045
(b) 10004
(c) 10041
(d) 41000
21. A number divided by 13 leaves a remainder 1 and if thequotient, is divided by 5 , weget a remainder of 3 . What will betheremainder if the number is divided by 65 ?
(a) 28
(b) 16
(c) 18
(d) 40

22 If p, q, r are in Geometric Progression, then which is trueamong thefollowing?
(a) $q=\frac{p+r}{2}$
(b) $\mathrm{p}^{2}=\mathrm{qr}$
(c) $\mathrm{q}=\sqrt{\mathrm{pr}}$
(d) $\frac{p}{r}=\frac{r}{q}$
23. If $1+10+10^{2}+\ldots$ upto n terms $=\frac{10^{n}-1}{9}$, then the sum of theseries $4+44+444+\ldots$ upto n terms is
(a) $\frac{4}{9}\left(10^{n}-1\right)-\frac{4 n}{9}$
(b) $\frac{4}{81}\left(10^{n}-1\right)-\frac{4 n}{9}$
(c) $\frac{40}{81}\left(10^{n}-1\right)-\frac{4 n}{9}$
(d) $\frac{40}{9}\left(10^{n}-1\right)-\frac{4 n}{9}$
24. Thedecimal fraction of $2.3 \overline{49}$ is equal to
(a) $\frac{2326}{999}$
(b) $\frac{2326}{990}$
(c) $\frac{2347}{999}$
(d) $\frac{2347}{990}$
25. $\left(5^{2}+6^{2}+7^{2}+\ldots+10^{2}\right)$ is equal to
(a) 330
(b) 345
(c) 355
(d) 360
26. Two numbers arein theratio $1: 2$ when 4 is added to each, theratio becomes 2:3. Then, the numbers are
(a) 9 and 12
(b) 6 and 8
(c) 4 and 8
(d) 6 and 9
27. $\left[1^{3}+2^{3}+3^{3}+\ldots+9^{3}+10^{3}\right]$ is equal to
(a) 3575
(b) 2525
(c) 5075
(d) 3025
28. A number, when divided by 899 , leaves remainder 63. What will betheremainder if the same number is divided by 29 ?
(a) 3
(b) 1
(c) 5
(d) 0
29. When 25^{25} is divided by 26 , theremainder is
(a) 1
(b) 2
(c) 24
(d) 25
30. A number when divided by the sum of 555 and 445 gives two times their differenceas quotient and 30as theremainder. Thenumber is
(a) 220030
(b) 22030
(c) 1220
(d) 1250

Foundation

Solutions

1 (b); Theprime numbers Less than 31 are $2,3,5,7,11$, $13,17,19,23,29$
\therefore required sum $=2+3+5+7+11+13+17+19$ $+23+29=129$
2 (b); Total even numbers from 1 to $50=25$
Total even numbers from 1 to $20=10$
Sum of even numbers $=n(n+1)$
Required sum =sum of even numbers from 1 to 50 - sum of even numbers from 1 to 20 $=25(25+1)-10(10+1)$
$=25 \times 26-10 \times 11=540$
3. (c); sum of first n natural numbers $=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
\therefore sum of $1{ }^{\text {st }} 25$ natural numbers
$=\frac{25 \times(25+1)}{2}=25 \times 13$
i.e. 13 is one of thefactor
4. (a); $(4)^{1793 / 4} \times 5 \times 1$
$4 \times 5 \times 1=20$ So, unit digit is 0 .
5. (a); $1+1-6+5=1$
6. (c); If squareof any primenumber is divided by 24 then remainder is always 1.
so, $\frac{(1+1+1+1)}{24}=\frac{4}{24}$ i.e4 is unit digit.
7. (c); $(1+3+5+\ldots+97)-(2+4+6+$. \qquad +98)
$\mathrm{n}_{1}=\frac{97+1}{2}=49, \quad \mathrm{n}_{2}=\frac{98}{2}=49$
sum $=n_{1}^{2}-n_{2}\left(n_{2}+1\right)=49^{2}-49 \times 50=-49$
8. (a); $\frac{250}{2}=125, \frac{125}{5}=25, \frac{25}{5}=5, \frac{5}{5}=1$
i.e. required numbers of zero $=25+5+1=31$
9. (b); 24
10. (c); 25
11. (d); Required remainder $=\frac{(21+28)}{33}=16$

12 (d); Let quotient $=x$
divisor $=7 x$ also divisor $=3 \times($ remainder $)$
$=3 \times 28=84$
$7 x=84, \quad x=12$
Dividend $=$ Divisor \times Quotient + Remainder $=84 \times 12+28=1036$
13. (c); Sinceit is form of $\frac{a^{n}}{a+1}$
i.e. $\frac{17^{200}}{17+1}$
\therefore Remainder $=1$, Sincen is even positiveinteger
14. (d); A number is exactly divisibleby 18 if it is divisible by 2 and 9 both.
since, 65043 is not divisible by 2 , so it is not divisibleby 18.
15. (a); by checking option
$2^{96}+1=\left(2^{32}\right)^{3}+1^{3}=\left(2^{32}+1\right)\left(2^{64}-2^{32}+1\right)$
16. (b); Decimal equivalent of fractions

$$
\frac{4}{9}=0.44 ; \sqrt{\frac{9}{49}}=\frac{3}{7}=0.43
$$

$(0.8)^{2}=0.64$
\therefore Least number $=0.43=\sqrt{\frac{9}{49}}$
17. (c); Expression $=0.121212$...
$=0 . \overline{12}=\frac{12}{99}=\frac{4}{33}$
[Since, 12 is repeating after decimal]
18. (b); Decimal equivalent of fractions

$$
\frac{15}{16}=0.94, \frac{19}{20}=0.95, \frac{24}{25}=0.96, \frac{34}{35}=0.97
$$

\therefore Least fraction $=\frac{15}{16}$
19. (b); Given, $1^{3}+2^{3}+\ldots 9^{3}=2025$

Then, $(0.11)^{3}+(0.22)^{3}+\ldots+(0.99)^{3}$
$=\left(\frac{11}{100}\right)^{3}+\left(\frac{22}{100}\right)^{3}+\ldots+\left(\frac{99}{100}\right)^{3}$
$=\left(\frac{11}{100}\right)^{3}\left(1^{3}+2^{3}+\ldots+9^{3}\right)$
$=\frac{1331}{1000000} \times 2025$

$$
\left[\because 1^{3}+2^{3}+\ldots+9^{3}=2025\right]
$$

$=\frac{2695275}{1000000}=2.695275 \approx 2.695$
20. (b); Decimal equivalent of fractions
$0.9=\frac{9}{10}, 0 . \overline{9}=\frac{9}{9}=1,0.0 \overline{9}=\frac{9}{90}=\frac{1}{10}$
and $0 . \overline{09}=\frac{9}{99}=\frac{1}{11}$
$\therefore 0 . \overline{9}$ is greatest.
21. (b); N atural numbers between 3 and 200
$=200-3=197$
Now divide 197 by 7

28
7) 197
14
57 56
1

So 28 natural numbers are there
22 (d); Let the consecutive odd no. are $x, x+2, x+4$
$x+x+2+x+4=87$
$3 x+6=87$
$x=\frac{81}{3}=27$
so, smallest number is 27 .
23. (b); 7^{105}

Cyclicity of 7 is 4.
So $\frac{105}{4}=$ Remainder is 1 .
$7^{1}=$ Unit digit
24. (c); $5^{71}+5^{72}+5^{73}$
$5^{71}\left(1+5+5^{2}\right)$
$5^{71} \times 31$
$5^{70} \times 155$
so 155 divides theexpression completly
25. (a); We know that $2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16$

Remainder $=\frac{33}{4}=1$.
Unit's digit in $2^{33}=$ unit digit in 2^{1}
Hence units digit $=2$
Remainder on division by $10=2$.
26. (b); Remainder $=16$

Divisor $=24$
Let number $=\mathrm{x}$
$x=24 y+16$ wherey is quotient.
Since 24 is a multiple of 12
Remainder $=\frac{16}{12}=4$
27. (c); $\frac{3^{21}}{5}$
$\frac{\left(3^{4}\right)^{5} \times 3}{5}=\frac{(81)^{5} \times 3}{5}$
$=\frac{1^{5} \times 3}{5}$
so, remainder $=3$
28. (d); Let thetwo digitnumber bexy
$x y x y=x y \times 100+x y$
$=x y(100+1)=101 x y$
29. (d); Numbers which are multipleof both 10,13 will bemultiple of 130 also
Numbers less then 1000 which are multiple of both 10 and 13
$=\frac{1000}{130}=7$
30. (c); $\frac{x}{\sqrt{0.25}}=25$
$x=25 \times(0.5)=12.5$
31. (c); Required number =(Sum of digits at odd places)

- Sum of digits at even place)
$=(2+6+0)-(8+3+4)=-7$
smallest number to beadded $=7$
32 (d); Factor of 1008
$=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$
so number is divided by 7 to make it perfect square.

33. (b); $1^{2}+2^{3}+3^{2} \ldots \ldots .+10^{2}$

$$
=\frac{n(n+1)(2 n+1)}{6}=\frac{10 \times 11 \times 21}{6}=385
$$

34. (b); Sum of squares from 1 to 20 - Sum of squares from 1 to 9
$=\frac{20 \times 21 \times 41}{6}-\frac{9 \times 10 \times 19}{6}=2870-285=2585$
35. (c); Let four consecutive natural numbers are

1, 2, 3, 4
$1 \times 2 \times 3 \times 4=24$
So 24 is a natural number which divides four consecutive natural number completely
36. (d); Given, $1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}=441$
$2^{3}+4^{3}+6^{3}+8^{3}+10^{3}+12^{3}$
$=2^{3}\left(1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}\right)$
$=2^{3} \times 441=3528$
37. (a); $\frac{2}{3}, \frac{5}{6}, \frac{11}{15}$ and $\frac{7}{8}$

Using cross multiplication method.
$\frac{2}{3} \times \frac{5}{6}=12<15$
So, $\frac{5}{6}>\frac{2}{3}$
$\frac{5}{6} \times \frac{11}{15}=75>66$
So, $\frac{5}{6}$ is greater than $\frac{11}{15}$
$\frac{5}{6} \times \frac{7}{8}=40<42$
So $\frac{7}{8}$ is thegreatest fraction.
38. (b); $0.4 \overline{23}=\frac{423-4}{990}=\frac{419}{990}$
39. (b); 0.393939
$=0 . \overline{39}=\frac{39}{99}=\frac{13}{33}$
40. (d); Let number $=y$.

According to question
$\frac{1}{3} \times \frac{1}{4} y=15, \quad y=180$
so, $\frac{3}{10} y=\frac{3}{10} \times 180=54$

Moderate

1. (c);

Taking greater of these two fractions and the next one
$\frac{2}{3} \times \frac{8}{11}$ $\frac{8}{11}>\frac{7}{9}$ $72<77$ Taking Taking greater of greater of thesetwo thesetwo fractions fractions and the and the next one next one
6. (b); $\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\ldots \cdot \frac{1}{61.65}=$?

Using formula:

$\frac{+1}{$| Difference of |
| :---: |
| denominator value |}$\left[\frac{1}{\text { First value }}-\frac{1}{\text { Last value }}\right]$ denominator value

$$
=\frac{1}{4}\left[\frac{1}{5}-\frac{1}{65}\right]=\frac{1}{4}\left[\frac{13-1}{65}\right]=\frac{1}{4}\left[\frac{12}{65}\right]=\frac{3}{65}
$$

7. (c);

$$
x=\frac{3}{2+\frac{2}{2+\frac{2}{\left.2+\frac{2}{3}\right\}}}}=\frac{8}{3}
$$

$$
=\frac{3}{\left.2+\frac{2}{2+\frac{2}{8}}\right\}}=2+\frac{2}{1} \times \frac{3}{8}=2+\frac{3}{4}=\frac{11}{4}
$$

$$
=\frac{3}{2+\frac{2}{\frac{11}{4}}}=\frac{3}{2+\frac{2}{1} \times \frac{4}{11}}
$$

$$
=\frac{3}{\left.2+\frac{2}{1} \times \frac{4}{11}\right\}}=2+\frac{8}{11}=\frac{30}{11}
$$

$$
=\frac{3}{\frac{30}{11}}=\frac{3}{1} \times \frac{11}{30}=\frac{11}{10}=1.1
$$

8. (a);

$$
\begin{aligned}
& x+\frac{1}{2+\frac{1}{3+\frac{1}{4+\frac{1}{5}}}}=12 \\
& 12=x+\frac{1}{2+\frac{1}{3+\frac{1}{\frac{21}{5}}}}=x+\frac{1}{2+\frac{1}{3+\frac{5}{21}}}
\end{aligned}
$$

$12=x+\frac{1}{2+\frac{1}{\frac{68}{21}}}=x+\frac{1}{\frac{157}{68}}=x+\frac{68}{157}$
$x=12-\frac{68}{157}$
$157 x=1884-68=1816$
$x=\frac{1816}{157}$
9. (a); $5 . \overline{12}+3 . \overline{21}+4 . \overline{31}=5 \frac{12}{99}+3 \frac{21}{99}+4 \frac{31}{99}$
$=(5+3+4)+\frac{64}{99}=12 \frac{64}{99}$
10. (d); $5 . \overline{76}-2 . \overline{3}=5 \frac{76}{99}-2 \frac{3}{9}=3 \frac{43}{99}=3 . \overline{43}$
11. (b); Given, $-1 \leq \frac{2 x-7}{5} \leq 1$
$\Rightarrow-5 \leq 2 x-7 \leq 5$
$\Rightarrow-5+7 \leq 2 x-7+7 \leq 5+7$
[by adding 7 in eq. (i)]
$\Rightarrow 2 \leq 2 x \leq 12$
$\Rightarrow 1 \leq x \leq 6$
So, number of values of $x=3(2,3$ and 5$)$
12 (c); Let therequired number bex.
According to thequestion,

$$
\begin{array}{ll}
& \mathrm{x}^{2}+\mathrm{x}=2 \times 3 \times 5 \\
\Rightarrow & \mathrm{x}^{2}+\mathrm{x}-30=0 \\
\Rightarrow & \mathrm{x}^{2}+6 \mathrm{x}-5 \mathrm{x}-30=0 \\
\Rightarrow & \mathrm{x}(\mathrm{x}+6)-5(\mathrm{x}+6)=0 \\
\Rightarrow & (\mathrm{x}-5)(\mathrm{x}+6)=0 \\
\therefore & \mathrm{x}=5
\end{array}
$$

13. (b); Required number between $\frac{1}{2}$ and $\frac{3}{5}$
$\Rightarrow \quad \frac{\frac{1}{2}+\frac{3}{5}}{2}$
$\Rightarrow \quad \frac{5+6}{20}=\frac{11}{20} \approx \frac{4}{7}$
14. (c); Let two consecutive even numbers are x and $(x+2)$.
\therefore According to thequestion,
$(x+2)^{2}-x^{2}=84$
$\Rightarrow \quad x^{2}+4 x+4-x^{2}=84$
$\Rightarrow \quad 4 \mathrm{x}=84-4=80$
$\Rightarrow \quad \mathrm{x}=\frac{80}{4}=20$
Two numbers are 20 and 22.
\therefore Therequired sum $=20+22=42$
15. (d); Required sum $=$ (sum of natural numbers from 1 to 100) - (sum of natural numbers from 1 to 49 .)
Sum of $[1+2+3+4+\ldots . .+100]$
$=\frac{n(n+1)}{2}=\frac{100(101)}{2}=5050$
and sum of $[1+2+3+4 \ldots . .+49]$
$=\frac{n(n+1)}{2}=\frac{50(49)}{2}=1045$
Hence, sum of $[50+51+52+53+\ldots . .+100]$
$=5050-1045=4005$
16. (b); Given, (1001) ${ }^{2008}+1002$

Unit digit of (1001) ${ }^{2008}=1$
Last digit of $1002=2$
\therefore Thelast digit $=1+2=3$
17. (d); Given, $7^{71} \times 6^{63} \times 3^{65}$

Then, $7^{1}=7,7^{2}=49,7^{3}$ $=343,7^{4}=2401$
\therefore Unit digit of $(7)^{71}=3$
$3^{3}=3, \quad 3^{2}=9, \quad 3^{3}=27, \quad 3^{4}=81$
Unit digit of (3) ${ }^{65}=3$
Unit digit of (6) $)^{63}=6$
\therefore Product $=3 \times 6 \times 3=54$
\therefore Unit digit $=4$
18. (c); $2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16,2^{5}=32$

Unit digit repeats itself after 4 powers.
Remainder of $\frac{23}{4}=3$
$\therefore(22)^{23}=(22)^{3}=2^{3}=8$
Unit digit $=8$.
19. (c); Given, (2153) ${ }^{167}$

Then, remainder of $\frac{167}{4}=3$
\therefore Unit digit of 3^{3} (i.e., 27) $=7$
20. (b); Such number is al ways divisibleby 9. To makeit clear, you can takesome example.
Example:
$496-(4+9+6)=477$,
which is divisibleby 9 .
$971-(9+7+1)=954$,
which is divisibleby 9 .

21 (d); According to thequestion,
Divisor $=5 \times$ Remainder
$=5 \times 46=230$
Quotient $=\frac{230}{10}=23$
Dividend $=$ Divisor \times Quotient + Remainder
Dividend $=230 \times 23+46=5290+49=5336$ \therefore Dividend $=5336$
22 (c); Given, a and b areodd positiveintegers. $a^{4}-b^{4}=\left(a^{2}+b^{2}\right)(a+b)(a-b)$
Let two positive odd integers be 1 and 3 .
\therefore Required number $=\left(1^{2}+3^{2}\right)(3+1)(3-1)=80$
Which is divisibleby 8.
23. (d); Required remainder $=\frac{\text { Last remainder }}{\text { New divisor }}$

Required remainder $=\frac{36}{17}=2 \frac{2}{17}$
\therefore Remainder $=2$
24. (c); Remainder $=\frac{\text { Last remainder }}{\text { New divisor }}$

Remainder $=\frac{63}{29}=2 \frac{5}{29}=5$
25. (a); Decimal equivalent of fractions

$$
\frac{2}{3}=0.67 ; \frac{5}{6}=0.83
$$

$\frac{11}{15}=0.73 ; \frac{7}{8}=0.875$
\therefore Greatest fractions is $7 / 8$.
26. (d); $67^{67}=(68-1)^{67}$ when divided by 68 , leaves remainder $(-1)^{67}=-1$
\therefore Required remainder $=-1+67=66$
27. (d); Weknow that,

Sum of squares of 1st n natural numbers
$=\frac{n(n+1)(2 n+1)}{6}$
Required sum $=$ (Sum of squares of natural numbers from 1 to 10) - 1^{2}
$=\frac{10(10+1)(2 \times 10+1)}{6}-1^{2}=\frac{10 \times 11 \times 21}{6}-1$
$=385-1=384$
28. (b); Here, $1^{3}+2^{3}+\ldots+10^{3}=3025$

Now, $4+32+108+\ldots+40000$
$=4(1+8+27+\ldots+1000)$
$=4\left(1^{3}+2^{3}+3^{3}+\ldots+10^{3}\right)$
$=4 \times 3025=12100$
29. (d); To find the smal lest fraction first we haveto find thedecimal equivalent of fractions
$\frac{7}{6}=1.166, \frac{7}{9}=0.777, \frac{4}{5}=0.8$ and $\frac{5}{7}=0.714$
Therefore, thesmallest number is $\frac{5}{7}$.
30. (b); $0 . \overline{001}=\frac{1}{999}$

Difficult

1. (b); Let the three consecutivenatural numbers be x,
$x+1$ and $x+2$.
According to thequestion,
$x^{2}+(x+1)^{2}+(x+2)^{2}=2030$
$\Rightarrow x^{2}+x^{2}+2 x+1+x^{2}+4 x+4=2030$
$\Rightarrow 3 x^{2}+6 x+5=2030$
$\Rightarrow 3 x^{2}+6 x-2025=0$
$\Rightarrow x^{2}+2 x-675=0$
$\Rightarrow x^{2}+27 x-25 x-675=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+27)-25(\mathrm{x}+27)=0$
$\Rightarrow(x-25)(x+27)=0$
$\Rightarrow \mathrm{x}=25$ or -27
\therefore Three consecutivenatural numbers are 25,26 and 27
Now, required number $=26$
2 (c); Let quotient $=x$
Then, divisor =10x
and remainder $=\frac{\text { Divisor }}{5}=2 x$
According to thequestion,
Remainder $=40$
$\Rightarrow \quad 2 x=40$
$\therefore \quad x=20$
Now, Dividend $=$ Divisor \times Quotient
+Remainder
$=x \times 10 x+40=10 x^{2}+40=4000+40=4040$
2. (a); Given, mand n arepositive integers and $m-n$ is an even number.
Let, $\quad m-n=2 p$
where, $2 p$ is theeven difference
So, it is clear that both m and n may beeither odd or even
So, $\quad m+n=2 q$
where, $2 q$ is theeven sum of thenumbers. Then, on multiplying Eqs. (i) and (ii), weget
$(m-n)(m+n)=2 p \times 2 q$
$\Rightarrow \mathrm{m}^{2}-\mathrm{n}^{2}=4 \mathrm{pq}$
$\therefore \mathrm{m}^{2}-\mathrm{n}^{2}$ will bedivisibleby 4 .
4 (d); Since, themiddle digits aregiven to besame.
\therefore Let the 99 digits numbers be
$2 \times x \ldots \times \times 2$

97 digits

Sum of digits at odd places

$$
=2+\underbrace{x+x+\ldots x+x+2}_{48 \text { digits }}=4+48 x
$$

(thereare 99 digits in all, 50 at odd places and 49 at even places)
Sum of digits at even places
$=x+x+\ldots+49$ terms $=49 x$
Differencebetween the sum of digits at odd and even places
$=4+48 x-49 x=4-x$
Now, $4-x=0$ or a multiple of 11

$$
4-x=0 \Rightarrow x=4
$$

5. (b);

$$
\begin{aligned}
& (1!)^{5}=1 \\
& (2!)^{4}=16 \\
& (3!)^{3}=216 \\
& (4!)^{2}=576 \\
& (5!)^{1}=120 \\
& \text { The last } 5 \text { digit of }(10!)^{5}=00000 \\
& \text { The last } 5 \text { digit of }(100!)^{4}=00000 \\
& (1000!)^{3}=00000 \\
& (10000!)^{2}=00000 \\
& (100000!)^{1}=00000
\end{aligned}
$$

Thus the last 5 digits of the given expression $=00929$

$$
\begin{aligned}
{[\because 1+16+216} & +576+120+00000+00000 \\
+00000+00000+00000 & =00929]
\end{aligned}
$$

6. (a); Let thefraction bex.

A ccording to thequestion,

$$
\begin{aligned}
& \frac{4 x}{7}+\frac{4}{7}=\frac{15}{14} \Rightarrow \frac{4 x}{7}=\frac{15}{14}-\frac{4}{7} \\
& =\frac{15-8}{14}=\frac{7}{14}=\frac{1}{2} \Rightarrow x=\frac{1}{2} \times \frac{7}{4}=\frac{7}{8} \\
& \therefore \frac{7}{8} \text { must beadded. }
\end{aligned}
$$

7. (c); $\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\frac{1}{7 \times 10}+\frac{1}{10 \times 13}+\frac{1}{13 \times 16}$
$=\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right) \times \frac{1}{3}$
$=\left(1-\frac{1}{16}\right) \times \frac{1}{3}=\frac{15}{16} \times \frac{1}{3}=\frac{5}{16}$
8. (d); Required sum $=$ [Sum of cubes of 1 to 10 natural numbers] - [Sum of cubes of natural numbers from 1 to 4$]$
$=\left[\frac{10 \times(10+1)}{2}\right]^{2}-\left[\frac{4(4+1)}{2}\right]^{2}$
$=\left[\frac{10 \times 11}{2}\right]^{2}-\left[\frac{4 \times 5}{2}\right]^{2}$
$=3025-100=2925$
9. (b); Given,
$\left(10^{12}+25\right)^{2}-\left(10^{12}-25\right)^{2}=10^{n}$
$(a+b)^{2}-(a-b)^{2}=4 a b$
$\therefore \quad\left(10^{12}+25\right)^{2}-\left(10^{12}-25\right)^{2}$
$=4 \times 10^{12} \times 25$
On comparing Eqs. (i) and (ii), weget

$$
\begin{equation*}
10^{\prime}=4 \times 10^{12} \times 25=10^{14} \tag{ii}
\end{equation*}
$$

i.e., $10^{n}=10^{14}$
$\therefore \quad n=14$
10. (b); Expression
$=\frac{3}{1^{2} \cdot 2^{2}}+\frac{5}{2^{2} \cdot 3^{2}}+\frac{7}{3^{2} \cdot 4^{2}}+\ldots+\frac{17}{8^{2} \cdot 9^{2}}+\frac{19}{9^{2} \cdot 10^{2}}$
On arranging
$=\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)+\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)+\ldots$
$+\left(\frac{1}{8^{2}}-\frac{1}{9^{2}}\right)+\left(\frac{1}{9^{2}}-\frac{1}{10^{2}}\right)$
$=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots+\frac{1}{8^{2}}-\frac{1}{9^{2}}+\frac{1}{9^{2}}-\frac{1}{10^{2}}$
$=1-\frac{1}{10^{2}}=1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}$
11. (c); Let
$\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}$
$\frac{1}{1+\sqrt{2}}=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}=\sqrt{2}-1$
$\frac{1}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})}=\sqrt{3}-\sqrt{2}$

$$
\begin{aligned}
& \therefore \text { Given expression }=\sqrt{2}-1+\sqrt{3}-\sqrt{2} \\
& \quad+\sqrt{4}-\sqrt{3}+\ldots+\sqrt{100}-\sqrt{99} \\
& =\sqrt{100}-1=10-1=9
\end{aligned}
$$

12 (d); Expression

$$
\begin{aligned}
& =\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\ldots+\frac{1}{\mathrm{n}(\mathrm{n}+1)} \\
& =\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\ldots+\frac{1}{\mathrm{n}(\mathrm{n}+1)} \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots \\
& \\
& \quad+\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{n}+1} \\
& =1-\frac{1}{\mathrm{n}+1}=\frac{\mathrm{n}}{\mathrm{n}+1}
\end{aligned}
$$

13. (a); Sum of squares of n terms $=\frac{n(n+1)(2 n+1)}{6}$

Required sum $=$ (sum of squares of natural numbers from 1 to 20) $-2^{2} \times$ (sum of squares of natural numbers from 1 to 10)

$$
\begin{aligned}
& =\frac{20(20+1)(40+1)}{6}-\frac{2^{2} \times(10)(10+1) \times(20+1)}{6} \\
& =\frac{20 \times 21 \times 41}{6}-\frac{4 \times 10 \times 11 \times 21}{6} \\
& =2870-1540=1330
\end{aligned}
$$

14. (a); Taking in pairs.

$$
\begin{aligned}
& \quad\left[\because\left(a^{2}-b^{2}\right)=(a-b)(a+b)\right] \\
& \left(1^{2}-2^{2}\right)+\left(3^{2}-4^{2}\right)+\ldots+\left(9^{2}-10^{2}\right) \\
& =(1+2)(1-2)+(3+4)(3-4)+\ldots \\
& =-3-7-11-15-19=-55 \quad+(9+10)(9-
\end{aligned}
$$

15. (a); Firstterm $=\frac{1}{5 \times 6}=\frac{1}{5}-\frac{1}{6}$

Second term $=\frac{1}{6 \times 7}=\frac{1}{6}-\frac{1}{7}$
20th term of series $=\frac{1}{24 \times 25}=\frac{1}{24}-\frac{1}{25}$
\therefore Required sum
$=\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\ldots+\left(\frac{1}{24}-\frac{1}{25}\right)$
$=\frac{1}{5}-\frac{1}{25}=\frac{5-1}{25}=\frac{4}{25}=0.16$
16. (b); According to thequestion,

Divisor $=25 \times$ Quotient
Divisor $=25 \times 16=400$
Also, divisor $=5 \times$ Remainder
\therefore Remainder $=\frac{400}{5}=80$
\therefore Dividend $=$ divisor \times Quotient + Remainder $=16 \times 400+80=6400+80=6480$
17. (a); Given, $3.718=\frac{1}{0.2689}$

Then, $\frac{1}{0.0003718}=0.2689 \times 10000=2689$
18. (b); Let the smallest possiblenumber be x, then
$x=15 k+12$ and $x=81+5$
$\Rightarrow \quad 15 k+12=8 \mathrm{l}+5$
$\Rightarrow \quad 15 \mathrm{k}+7=8 \mathrm{l}$
$\Rightarrow \quad \mathrm{I}=\frac{15 \mathrm{k}+7}{8}$,
I must be an integer puttingk $=1,2,3, \ldots$ etc.
But at $k=7$, we get a number which on being divided by 8 , gives 'l' as an integer.
So, $\quad x=15 \times 7+12, x=117$
Thenext higher numbers
$=($ L.C.M. of divisors) $\mathrm{m}+117$
$=($ L.C.M. of 15 and 8$) m+117=120 m+117$
So consider the highest possible value of m such that $120 \mathrm{~m}+117 \leq 9999$ (largest possiblenumber of four digit)
Thus at $\mathrm{m}=82$, the value of $120 \mathrm{~m}+117=9957$, which is the required number.
19. (b); The number of zeros at theend of ($5!)^{5!}=120$ [$\because 5!=120$ and thus (120) ${ }^{120}$ will give 120 zeros] and thenumber of zeros at theend of the ($10!)^{10}$, ($50!)^{50!}$ and ($\left.100!\right)^{100!}$ will be greater than 120 .
N ow sincethenumber of zeros at theend of the whole expression will depend on the number which has least number of zeros at theend of the number among other given numbers.
So, the number of zeros at the end of the given expression is 120 .
20. (b); Let thefraction be $\frac{x}{y}$, then

$$
\left(\frac{x}{y}\right)^{2}=\frac{x^{2}}{y^{2}}
$$

then $\quad \frac{\frac{2}{3} x^{2}}{\frac{1}{5} y^{2}}=\frac{10 x^{2}}{3 y^{2}}$

Thus

$$
\frac{10 x^{2}}{3 y^{2}}=2 \frac{x}{y} \Rightarrow \frac{x}{y}=\frac{3}{5}
$$

Hence $\quad x+y=3+5=8$
21. (d); $7777+7777 \times 7777 \times(5 \div 77) \times(11 \div 35)$
$=7777+7777 \times 7777 \times \frac{5}{77} \times \frac{11}{35}$
$=7777+1111 \times 1111=7777+1234321=1242098$
22 (a); The last digit of $32^{32^{32}}$ is same as $2^{32^{32}}$
But $\quad 2^{32^{32}}=2^{32 \times 32 \times 32 \times \ldots \times 32 \text { times }}$
$\Rightarrow \quad 2^{32^{32}}=2^{4 \times 8 \times(32 \times 32 \times \ldots \times 31 \text { times })}$
$\Rightarrow \quad 2^{32^{32}}=2^{4 n}$,
wheren $=8 \times(32 \times 32 \times \ldots \times 31$ times $)$
A gain $2^{4 n}=(16)^{n} \Rightarrow$ unit digitis6, for every $n \in N$
Hence, the required unit digit $=6$.
23. (c); The last digit of the expression will be same as the last digit of $2^{888}+8^{222}$.
N ow the last digit of 2^{888} is 6 and thelast digit of the 8^{222} is 4.
Thus the last digit of $2^{888}+8^{222}$ is 0 (zero), since 6 $+4=10$.
24. (a); 111 ! $=1 \times 2 \times 3 \times 4 \times 5 \times \ldots \times 100 \times 111$

Since thereis a product of 5 and 2 hence it will givezero as theunit digit.
Hencethe unit digit of 111 ! is 0 (zero).
25. (d); $4^{6 n}-6^{4 n}=(64)^{2 n}-(36)^{2 n}=\left(64^{n}+36^{n}\right)\left(64^{n}-36^{n}\right)$ For $n=1,3,5, \ldots$ etc. $\left(64^{n}+36^{n}\right)$ is divisible by 100 and all its factors. Also ($64^{n}-36^{n}$) is divisibleby 28 and all its factors.
Again for $n=2,4,6, \ldots$ etc. $\left(64^{n}-36^{n}\right)$ is always divisible by 100 and all its factors. Also it is divisibleby 28 and all its factors.
26. (d); $19^{n}-1$ is divisibleby $18=(19-1)$ when n iseven or odd. So (a) is correct.
$19^{n}-1$ is divisible by 20 only when n is even so (b) is wrong.
$19^{n}-1$ is never divisible by 19 which is correct.
Thus(d) is themost appropriateanswer.
27. (a); Theremainder when 10^{1} is divided by 6 is 4 Theremainder when 10^{2} is divided by 6 is 4 Theremainder when 10^{3} is divided by 6 is 4 Theremainder when 10^{4} is divided by 6 is 4 Theremainder when 10^{5} is divided by 6 is 4 Thus the remainder is always 4.

So, therequired remainder

$$
=\frac{4+4+4+\ldots 99 \text { times }}{6}=\frac{396}{6}
$$

Thus theremainder is zero.
28. (b); Let the number beN then

$$
\begin{equation*}
N=34 Q+R \tag{i}
\end{equation*}
$$

where Q is any quotient
Again $N=5 D$ and D is also a quotient

$$
\begin{array}{ll}
\text { but } & D=R+8 \\
\text { so } & N=5(R+8) \\
\therefore & 5(R+8)=34 Q+R \\
& 5 R+40=34 Q+R \\
\Rightarrow & 34 Q-40=4 R \\
\Rightarrow & 17 Q-2 R=20
\end{array}
$$

So the minimum possiblevalue of $\mathrm{Q}=2$ and the corresponding value of $\mathrm{R}=7$
So $\quad N=34 \times 2+7$

$$
N=75
$$

Hence (b) is correct Choice.
29. (a); Sincetheproduct of 4 primefactors $=1365$
$=3 \times 5 \times 7 \times 13$
and the sum of the 3 primefactors
$=25=(5+7+13)$
Now, total number of factors of the required number $\mathrm{N}=24$
$=2^{3} \times 3 \Rightarrow(1+1)(1+1)(1+1)(2+1)$
Let N can beexpressed as $\mathrm{N}=3^{p} \times 5^{q} \times 7^{r} \times 13^{s}$ Thus, for N to begreatest possible number in the aboveexpressed form, thepower of the greatest primefactors will begreater.

$$
\begin{array}{ll}
\text { So, } & N=3 \times 5 \times 7 \times 13^{2} \\
& =105 \times 169=17745
\end{array}
$$

30. (a); Total numbers in the set $=(800-200)+1=601$ Number of numbers which are divisible by 5

$$
=\frac{(800-200)}{5}+1=121
$$

N umber of numbers which aredivisible by 7

$$
=\frac{(798-203)}{7}+1=86
$$

N umber of numbers which aredivisibleby both 5 and 7

$$
=\left(\frac{770-210}{35}\right)+1=17
$$

\therefore N umber of numberswhich areeither divisible by 5 or 7 or both

$$
=(121+86)-17=190
$$

Thus the number of numbers in the given set which areneither divisible by 5 nor by 7

$$
=601-190=411
$$

Hence(a) is correct option.

Previous Year Solutions

1. (a); Let the natural numbers be x and y.
\therefore Required sum $=18 x+21 y=3(6 x+7 y)$
Hence, thesumis divisibleby 3.
Out of thegiven options, only 2007 is completely divisibleby 3.
2 (a); Let first threeconsecutivenatural numbers bex,
$x+1$ and $x+2$.
According to thequestion,
$x+x+1+x+2=27$
$\Rightarrow \quad 3 x+3=27 \Rightarrow x=8$
First three consecutivenumbers 8,9 and 10 .
\therefore Sum of next 3 consecutivenumbers
$=11+12+13=36$
2. (c); Sum of first n natural number $=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$

Sum of first 25 natural numbers.
$\therefore 1+2+3+\ldots+25$
$=\frac{25(25+1)}{2}=25 \times 13$
\therefore Thefactor 13 is one of numbers
4 (d); Required sum =(sum of natural numbers from 1 to 100) - (sum of natural numbers from 1 to 50 .)
sum of $[1+2+3+4+\ldots+100]$

$$
=\frac{n(n+1)}{2}=\frac{100(101)}{2}=5050
$$

and sum of $[1+2+3+4+\ldots+50]$

$$
=\frac{n(n+1)}{2}=\frac{50(51)}{2}=1275
$$

Hence, sum of $[51+52+53+\ldots+100]$
$=5050-1275=3775$
5. (d); Given, $(124)^{376}+(124)^{375}$
$4^{1}=4 ; 4^{2}=16 ; 4^{3}=64$
Remainder on dividing 376 by $4=0$
$\therefore \quad$ Unit digit of $(124)^{376}=6$
Remainder on dividing 375 by $4=3$
$\therefore \quad$ Unit digit of $(124)^{375}=4$
$\therefore \quad$ Sum $=6+4=10$
Hence, unit digit $=0$.
6. (d); Unit digit in the expansion of $5^{6527}=5$
(5 repeats for every power increased)
$36^{526}=$ Unit digit in $6^{526}=6$
(6repeats for every power increased)
Now, $3^{1}=3,3^{2}=9,3^{3}=27 ; 3^{4}$
$=81,3^{5}=243 \ldots$

Now, remainder of $\frac{54}{4}=2$
\therefore Unitdigit $=(3)^{2}=9$
Required digit $=$ Sum of $(9+5+6)=20$
Hence, required unit digit $=0$
7. (b); Unit digit of given numbers

$$
\begin{aligned}
(251)^{98} & =\ldots 1 \\
(21)^{29} & =\ldots 1 \\
(106)^{100} & =\ldots 6 \\
(705)^{35} & =\ldots 5 \\
(16)^{4} & =\ldots 6 \\
259 & =\ldots .9
\end{aligned}
$$

\therefore Required answer $=1+1-6+5-6+9=4$
Hence, unit digit =4
8. (b); Wehave, $\left(6^{n}-1\right)$

If n is even, then taking $\mathrm{n}=2$,
$6 n-1=6^{2}-1=36-1=35$
Here, number 35 is divisible by 35 .
Hence, for any even valueof $n,\left(\sigma^{n}-1\right)$ isdivisible by 35 .
9. (d); Given, divisor =a
and remainder $=18$
Weknow that,
Dividend $=($ Divisor \times Quotient $)+$ Remainder
Throughopotins
$228=(70 \times 3)+18$
Hence, biggest two digit value $=70$
10. (c); Expression $=2^{16}-1=\left(2^{8}\right)^{2}-1$
$=\left(2^{8}+1\right)\left(2^{8}-1\right)=(256+1)(256-1)$
$=257 \times 255$
which is exactly divisibleby 17.
(since, $17 \times 15=255$)
11. (b); Dividend $=($ Divisor \times Quotient) + Remainder
$=175 \times q+132=25 \times 7 \times q+25 \times 5+7$
$=25(7 q+5)+7$
It is clear that when thenumber is divided by 25 , remainder will be 7 .
12 (a); Given, $4^{61}+4^{62}+4^{63}=4^{61}\left(1+4+4^{2}\right)=4^{61} \times 21$
Here, 21 is divisibleby 3.
13. (a); Given, $(2464)^{1793} \times(615)^{317} \times(131)^{491}$

Then, unit digit of (2464) ${ }^{1793}$
Remainder of $\frac{1793}{4}=1$
Hence, unit digit of $(2464)^{1793}=4$
Unit digit of (615) ${ }^{317}=5$
Unit digit of (131) ${ }^{491}=1$
so, unit digit $=4 \times 5 \times 1=20=0$
14. (b); Expression $=\left(2^{71}+2^{72}+2^{73}+2^{74}\right)$
$=2^{71}(1+2+4+8)=2^{71} \times 15=2^{71} \times 3 \times 5$
Which is exactly divisibleby 10.
15. (b); Given, remainder $=4$

According to thequestion,
Divisor $=3 \times$ Remainder
$\Rightarrow \quad$ Divisor $=3 \times 4=12$
Again, divisor $=4 \times$ Quotient
$\Rightarrow \quad 4 \times$ Quotient $=12$
$\Rightarrow \quad$ Quotient $=\frac{12}{4}=3$
Dividend $=$ Quotient \times Divisor + Remainder $=3 \times 12+4=40$
16. (c); If a number is divisible by two numbers separately, then it should be divisible by their product.
17. (a); $\left(x^{n}+y^{n}\right)$ is exactly divisibleby $(x+y)$
when, n is odd.
Here, $\quad x=13, y=11$
and $n=5,7$.
$\therefore \quad$ Thecommon factor

$$
=x+y=13+11=24
$$

18. (d); Let three consecutive even integers be $x, x+2$ and $x+4$, respectivel y.
According to thequestion.
$x+x+2+x+4=54$
$\Rightarrow 3 \mathrm{x}+6=54 \Rightarrow 3 \mathrm{x}=48$
$\therefore \mathrm{x}=16$
\therefore The least even number $=16$
19. (a); Weknow that

$$
\begin{aligned}
& 2^{1}=2,2^{2}=4, \\
& 2^{3}=8 \\
& 2^{4}=16 \\
& 2^{5}=32
\end{aligned}
$$

2 repeats at unit's placeafter power of 4.
Now, (122) ${ }^{173}=\left(122^{4}\right)^{43} .122$
Unit digit in (122) ${ }^{173}=$ Unit digit in $\left(122^{4}\right)^{43} \times$ Unit digit in 122 $=$ Unit digit in $(6 \times 2)=2$
20. (b); The least number of 5 -digits $=10000$
41) 10000 (243
$\frac{82}{180}$
$\frac{164}{160}$
$\frac{123}{37}$
\therefore Required number

$$
=10000+(41-37)=10004
$$

21. (d); Let thenumber be x and quotient bey.
\therefore Casel $\frac{\mathrm{x}}{13}=\mathrm{y} \frac{1}{13}$
Case II Now, quotient is divided by 5 and remainder is 3 .
$\therefore \quad \frac{y}{5}=1 \frac{3}{5}$
$\therefore \quad y=(5 \times 1)+3=8$
and $\quad \frac{x}{13}=8 \frac{1}{13}$

$$
x=(8 \times 13)+1=105
$$

Now, $\frac{105}{65}=1 \frac{40}{65}$
Remainder $=40$
22 (c); Since, p, q, rarein geometric progression.
$\therefore \quad q^{2}=p r$
Then, $q=\sqrt{p r}$
23. (c); Expression $=4+44+444+\ldots$ to n terms $=4(1+11+111+\ldots$ to n terms $)$ multiplying and dividing by 9 .

$$
=\frac{4}{9}(9+99+999+\ldots \text { to } n \text { terms })
$$

On rearranging

$$
\begin{aligned}
& =\frac{4}{9}[(10-1)+(100-1)+(1000-1)+\ldots n \text { terms }] \\
& =\frac{4}{9}\left[\left(10+10^{2}+10^{3}+\ldots n \text { terms }\right)-n\right] \\
& =\frac{4}{9}\left[\left(10\left(1+10+10^{2}+\ldots n \text { terms }\right)-n\right]\right. \\
& =\frac{40}{9} \cdot \frac{\left(10^{n}-1\right)}{9}-\frac{4}{9} n
\end{aligned}
$$

[Sum of n terms of theGP given as $\left(\frac{10^{n}-1}{9}\right)$] $=\frac{40}{81}\left(10^{n}-1\right)-\frac{4}{9} n$
24. (b); Expression $=2.3 \overline{49}=2+0.3 \overline{49}$

$$
=2+\frac{(349-3)}{990}=2 \frac{346}{990}=\frac{2326}{990}
$$

25. (c); Given, $\left(5^{2}+6^{2}+7^{2}+\ldots+10^{2}\right)$

Sum of squares of first n natural numbers

$$
=\frac{n(n+1)(2 n+1)}{6}
$$

Required sum $=$ (sum of squares of natural numbers from 1 to 10) - (sum of squares of natural numbers from 1 to 4)
$=\frac{10 \times(10+1)(20+1)}{6}-\frac{4 \times(4+1)(8+1)}{6}$
$=\frac{10 \times 11 \times 21}{6}-\frac{4 \times 5 \times 9}{6}$
$=385-30=355$
26. (c); Let thetwo numbers be x and y, respectively
$\therefore \quad \frac{\mathrm{x}}{\mathrm{y}}=\frac{1}{2} \quad$ (given)
or $\quad y=2 x$
Now, when 4 is added to each number theratio becomes 2:3.

Then, $\frac{x+4}{y+4}=\frac{2}{3}$
On solving,

$$
\begin{aligned}
& 3 x+12=2 y+8 \\
& 3 x+12=2(2 x)+8 \quad \text { [fromEq. }(\mathrm{i})] \\
& 3 x+12=4 x+8 \\
& \Rightarrow \quad \\
& x=4
\end{aligned}
$$

Now, from Eq. (i)

$$
y=2 x
$$

i.e, $\quad y=2 \times 4=8$
$\therefore \quad$ Thenumbers are 4 and 8 .
27. (d); Sum of cubes of 1st n natural numbers

$$
\begin{aligned}
& =\left\{\frac{n(n+1)}{2}\right\}^{2} \\
\therefore & 1^{3}+2^{3}+3^{3}+\ldots+10^{3} \\
& =\left[\frac{10 \times(10+1)}{2}\right]^{2}[\because n=10] \\
& =\left(\frac{10 \times 11}{2}\right)^{2}=(55)^{2} \\
& =55 \times 55=3025
\end{aligned}
$$

28. (c); Remainder $=\frac{\text { Last remainder }}{\text { New divisor }}$

Remainder $=\frac{63}{29}=2 \frac{5}{29}=5$
29. (d); $\frac{(25)^{25}}{26}=\frac{\left(25^{2}\right)^{12} \times 25}{26}$
$=\frac{(625)^{12} \times 25}{26}=\frac{(1)^{12} \times 25}{26}$
\therefore Remainder $=25$
30. (a); According to thequestion,

Divisor $=555+445=1000$
Dividend =?
Quotient $=(555-445) \times 2=110 \times 2=220$
Remainder $=30$
Dividend $=($ Divisor \times Quotient $)+$ Remainder $=(1000 \times 220)+30=220000+30=220030$

LCM and HCF

Factors and M ultiples: If a divides b exactly, we say that a is a factor of b and also wesay that bis multiple of a. i.e. 7 is a factor of 14,8 is factor of 24 e.t.c. or 14 is multiple of 7,24 is multiple of 8 .

HCF/G.C.D/G.C.M : The HCF of two or more than two numbers is the greatest number that divides each of them exactly.

M ethod of finding HCF

(i) Factorization method: Express each one of thegiven numbers as theproduct of primefactors. Theproduct of common prime factors with least power gives HCF.

Example: Find the HCF of 42,63 and 140, $42=7 \times 2 \times 3,63=7 \times 3 \times 3,140=7 \times 5 \times 2 \times 2$, So HCF $=7$
(i) Division M ethod: Suppose wehavefind theHCF of two given numbers. Dividethelarger number by the smaller one. Now dividethe divisor by the remainder. Repeat this process till remainder is zero. Thelast divisor is required HCF.

Example: Find theHCF of 148 and 185

$$
\begin{aligned}
& \text { 148) } 185(1 \\
& 148 \\
& \hline 37) 148(4 \\
& \frac{148}{X X} \\
& \hline
\end{aligned}
$$

i.e. $\mathrm{HCF}=37$.

LCM :Theleast number which is exactly divisibleby each oneof thegiven number is called their LCM.

Methods

(1) Factorization method: Resolveeach of thegiven number into a product of primefactors. LCM is the product of terms of highest power of all factors.

Product of two numbers $=$ their LCM \times their HCF
Co-prime: Two numbers aresaid to be co-primeif their HCF is 1.
i.e. 4 and 3 arc co-primenumbers.

HCF and LCM of fractions

(i) $\mathrm{HCF}=\frac{\mathrm{HCF} \text { of numerators }}{\mathrm{LCM} \text { of denominators }}$
(ii) $\mathrm{LCM}=\frac{\text { LCM of numerators }}{\text { HCF of denominators }}$

Important Results

(i) Product of two numbers $=\mathrm{HCF}$ of thenumbers $\times \mathrm{LCM}$ of thenumbers
(ii) Thegreatest number which divides thenumber x, y and z leaving remainders a, b and c respectivel y. $=\operatorname{HCF}$ of $(x-a)(y-b)(z-c)$
(iii) The least number which when divided by x, y and z leaves theremainder a, b and $c r e s p e c t i v e l y$, is given by $[L C M$ of $(x, y, z)+K], \quad$ whereK $=(x-a)=(y-b)=(z-c)$
(iv) Theleast number which divided by x, y and z leaves thesame remainder k in each case, is given by [LCM of $(x, y, z)+K]$
(v) Thegreatest number that will dividex, y and z leaving the sameremainder in each case, is given by [HCF of $(x-y),(y-z),(z-x)$]
(vi) When theHCF of each pair of n given numbers is a and their LCM isb, then product of thesenumbers isgiven by (a) ${ }^{n-1} \times$ bor (HCF) $)^{n-1} \times$ LCM

Types of Questions

1. HCF of $\frac{2}{3}, \frac{4}{5}$ and $\frac{6}{7}$

Sol. HCF of fractions $=\frac{\text { HCF of numerators }}{\text { LCM of denominators }}$

$$
=\frac{\operatorname{HCF}(2,4,6)}{\operatorname{LCM}(3,5,7)}=\frac{2}{105} .
$$

2 TheHCF (GCD) of a, b is 12 and a and b are positive integers and $a>b>12$. Thesmallest value of (a, b) are respectively
Sol. Given HCF of $a, b=12$
Let the numbers be $12 x$ and $12 y$, where x and y are co-prime.
But given $a>b>12$
i.e. $a=36$
$b=24$
3. TheLCM of threedifferent numbers is 120 . Which of thefollowing cannot beHCF
(i) 4
(ii) 12
(iii) 35
(iv) 8

Sol. LCM of threeno is $=120$
Now, factors of $120=2 \times 2 \times 2 \times 3 \times 5$,
HenceH CF can be $4,8,12$
But 35 can't beHCF.
4. Two numbers are in theratio 3:4. If their LCM is 84 , then the greater number is
Sol. Let thenumber be $3 x$ and $4 x$
LCM of $3 x$ and $4 x=12 x$

LCM $=84$
$12 x=84$
$x=7$
Greatest Number $=4 \times 7=28$
5. A rectangular piece of cloth has dimentions 16 m and 12 m . What is the least number of equal square that can becut out of this cloth?
Sol. HCF of 16 and $12=4$
N o of pieces $=\frac{16 \times 12}{4 \times 4}=3 \times 4=12$
6. Find the largest number, which divides $34,90,104$, leaving thesame remainder in each case.
Sol. Differencebetween numbers $=90-34,104-90$ and 104-134
$=56,14$ and 70 .
HCF of 56,14 and $70=14$
i.e. 14 is largest number.
7. Which is the smallest multiple of 7 , which when divided by 6, 9, 15 and 18 respectively leaves 4 as remainder in each case.

Sol. LCM of 6, 9, 15 and $18=90$
Remainder $=4$, but number is also divisibleby 7 so required number
$=90 \mathrm{k}+4$
By putting
$k=1,2,3,4 \ldots . .$. and checking if it is divisibleby 7
Required number $=90 \mathrm{k}+4=90 \times 4+4=364$

Foundation

Questions

1. LCM of $\frac{2}{3}, \frac{4}{9}, \frac{5}{6}$ is
(a) $\frac{20}{3}$
(b) $\frac{10}{3}$
(c) $\frac{20}{27}$
(d) $\frac{8}{27}$

2 The HCF of two numbers is 8 . Which one of the following can never betheir LCM?
(a) 24
(b) 48
(c) 56
(d) 60
3. TheLCM of two numbersis 520 and their HCF is 4 . If oneof thenumbers is 52 , then theother number is
(a) 40
(b) 42
(c) 50
(d) 52
4. TheHCF of two numbersis 96 and their LCM is 1296. If one of thenumbers is 864 , theother is
(a) 132
(b) 135
(c) 140
(d) 144
5. The product of two numbers is 216 . If the HCF is 6 , then their LCM is
(a) 72
(b) 60
(c) 48
(d) 36
6. Two numbers are in the ratio 3: 4. If their HCF is 4, then their LCM is
(a) 48
(b) 42
(c) 36
(d) 24
7. TheLCM of two numbers, which are multiples of 12 is 1056 . If one of thenumbers is 132 , the other number is
(a) 12
(b) 72
(c) 96
(d) 132

8 Two numbers are in the ratio 3:4. The product of their HCF and LCM is 2028. Thesum of thenumbers is
(a) 68
(b) 72
(c) 86
(d) 91
9. Two numbers are in theratio 3:4. If their LCM is 240 , thesmaller of thetwo number is
(a) 100
(b) 80
(c) 60
(d) 50
10. TheHCF of two numbers is 16 and their LCM is 160 . If one of the number is 32 , then theother number is
(a) 48
(b) 80
(c) 96
(d) 112
11. Theproduct of two numbersis 4107 . If theHCF of the numbers is 37 , the greater number is
(a) 185
(b) 111
(c) 107
(d) 101

12 Theratio of two numbers is 3 : 4 and their HCF is 5 . Their LCM is
(a) 80
(b) 48
(c) 120
(d) 60
13. The LCM of two numbers is 1820 and their HCF is 26. If onenumber is 130 . Then, theother number is
(a) 70
(b) 1690
(c) 364
(d) 1264
14. The HCF of two numbers 12906 and 14818 is 478. Their LCM is
(a) 400086
(b) 200043
(c) 60012
(d) 800172
15. What is the greatest number which will divide 110 and 128 leaving a remainder 2 in each case?
(a) 8
(b) 18
(c) 28
(d) 38
16. Thesmallest perfect squaredivisibleby each of 6,12 and 18 is
(a) 196
(b) 144
(c) 108
(d) 36
17. When a number is divided by 15,20 and 35 , each timetheremainder is 8 . Then, that smallest number is
(a) 428
(b) 427
(c) 328
(d) 388
18. Find the HCF of 35 and 30 .
(a) 5
(b) 6
(c) 7
(d) 8
19. TheHCF and theproduct of two numbers are 15 and 6300 respectively. The number of possible pairs of thenumbers are.
(a) 4
(b) 3
(c) 2
(d) 1
20. TheLCM of two numbers is 12 times their HCF. The sum of the HCF and the LCM is 403. If one of the numbers is 93 , then other number is
(a) 124
(b) 128
(c) 134
(d) 138
21. Find the least number exactly divisibleby $12,15,20$, 27.
(a) 450
(b) 540
(c) 230
(d) 640
22. The largest number which divides 25,73 and 97 to leavethe sameremai nder in each case, is:
(a) 24
(b) 23
(c) 21
(d) 6
23. Find the largest 5 digits number which is exactly divisibleby $12,15,18,27$.
(a) 90000
(b) 99999
(c) 99010
(d) 99900
24. Find theleast number which when divided by 20,25 , 35, 40 leaves remainders 14, 19, 29 and 34 respectively.
(a) 1220
(b) 1394
(c) 1365
(d) 1470
25. 3 different containers contain 496l, 403l and 7131 mixtureof milk and water. What biggest measure of a container can measureall the 3 quantities exactly?.
(a) 311
(b) 411
(c) 511
(d) 521
26. Three bells ring simultaneously at 11am. They ring at regular intervals of $20 \mathrm{~min}, 30 \mathrm{~min}$ and 40 min , respectively. Thetime when all thethreering together nextis:
(a) 2 pm
(b) 1 pm
(c) $1: 15 \mathrm{pm}$
(d) $1: 30 \mathrm{pm}$
27. Four runners started running simultaneously froma point on a circular track. They took $200 \mathrm{~s}, 300 \mathrm{~s}, 360 \mathrm{~s}$ and 450 s to complete one round. A fter how much time do they meet at the strarting point for the first time?
(a) 1800 s
(b) 3600 s
(c) 2400 s
(d) 4800 s
28. TheLCM of two positive integers is twice thelarger number. The difference of the smaller number and theHCF of thetwo numbers is 4. The smaller number is:
(a) 12
(b) 6
(c) 8
(d) 10
29. Six bell s commence tolling together at intervals of 2 , $4,6,8,10$ and 12 s , respectively. In 30 min., how many times do they toll together?
(a) 16
(b) 15
(c) 10
(d) 4
30. Rajesh is incharge of buying bread rolls and bunsfor a party. There are 10 buns in each box of buns and 8 bread rolls in each box of bread rolls. Rajesh wants to buy exactly the same number of buns and bread rolls. What is thesmallest number of boxes heshould buy for buns alone?
(a) 10
(b) 8
(c) 4
(d) 5

Moderate

1. Three tankers contain $403 \mathrm{I}, 434 \mathrm{I}, 465 \mathrm{I}$ of diesel, respectively. Then, the maximum capacity of container that can measure the diesel of the three containers in exact number of times is
(a) 311
(b) 621
(c) 41 I
(d) 841

2 A, B and C start together from thesamepoint to travel around a circular path of 30 km in circumference. A and B are travelling in the same direction and C in theopposite direction. If A travels $5 \mathrm{~km}, B$ travels 7 kmand C travels 8 km in an hour, then they all come together again after:
(a) 25 h
(b) 30 h
(c) 15 h
(d) 20 h
3. The traffic lights at three different road crossings change after $24 \mathrm{~s}, 36 \mathrm{~s}$ and 54 s , respectively. If they all change simultaneously at 10:15:00 am, then at what time will they again changesimultaneously?
(a) $10: 16: 54 \mathrm{am}$
(b) $10: 18: 36 \mathrm{am}$
(c) $10: 17: 02 \mathrm{am}$
(d) $10: 22: 12 \mathrm{am}$
4. Sum of two numbers is 384, HCF of the numbers is 48. The difference of the number is
(a) 100
(b) 192
(c) 288
(d) 336
5. The sum of two numbers is 45 . Their difference is $\frac{1}{9}$ of their sum. Their LCM is
(a) 200
(b) 250
(c) 100
(d) 150
6. The ratio of the sum to the LCM of two natural numbers is $7: 12$. If their HCF is 4 , then the smaller number is
(a) 20
(b) 16
(c) 12
(d) 8
7. If thestudents of a class can begrouped exactly into 6 or 8 or 10, then theminimum number of students in theclass must be
(a) 60
(b) 120
(c) 180
(d) 240
8. Threenumbers are in the ratio $2: 3: 4$ and their HCF is 12. TheLCM of the numbers is
(a) 144
(b) 192
(c) 96
(d) 72
9. Thegreatest common divisor of $3^{3^{333}}+1$ and $3^{3^{334}}+1$ is
(a) $3^{3^{333}}+1$
(b) 20
(c) 2
(d) 1
10. A milk vendor has 21 I of cow milk, 421 of toned milk and 63 I of double toned milk. If he wants to pack them in cans, so that each can contains same number of litres of milk and does not want to mix any two kinds of milk in a can, then the least number of cans required as
(a) 3
(b) 6
(c) 9
(d) 12
11. There are 24 peaches, 36 apricots and 60 bananas and they haveto bearranged in several rows in such a way that every row contains the same number of fruits of only onetype. What is theminimumnumber of rows required for thisto happen?
(a) 12
(b) 9
(c) 10
(d) 6

12 Three numbers which are coprimes to one another are such that the product of the first two is 551 and that of the last two is 1073. The sum of the three numbers is
(a) 75
(b) 81
(c) 85
(d) 89
13. Threesets of English, M athematics and Sciencebooks containing 336, 240 and 96 books, respectively have to be stacked in such a way that all the books are stored subject-w ise and the height of each stack is the same. Total number of stacks will be
(a) 14
(b) 21
(c) 22
(d) 48
14. The sum of two numbers is 36 and their HCF and LCM are 3 and 105, respectively. The sum of the reciprocals of two numbers is
(a) $\frac{2}{35}$
(b) $\frac{3}{25}$
(c) $\frac{12}{35}$
(d) $\frac{2}{25}$
15. What is the least number of squaretiles required to pavethefloor of aroom 15 m 17 cm long and 9 m 2 cm broad?
(a) 840
(b) 841
(c) 820
(d) 814
16. TheHCF (GCD) of a, b is 12. a, b are positiveintegers and $\mathrm{a}>\mathrm{b}>12$. The smallest values of (a, b) are respectively.
(a) 12,24
(b) 24,12
(c) 24,36
(d) 36,24
17. If $P=2^{3} \times 3^{10} \times 5$ and $Q=2^{5} \times 3 \times 7$, then HCF of P and Q is
(a) 2.3.5.7
(b) 3.2^{3}
(c) $2^{2} .3^{7}$
(d) $2^{5} \cdot 3^{10} \cdot 5.7$
18. The sum of two numbers is 84 and their HCF is 12 . Total number of such pairs of numbers is
(a) 2
(b) 3
(c) 4
(d) 5
19. The sum of two numbers is 36 and their HCF is 4. How many pairs of such numbers are possible?
(a) 1
(b) 2
(c) 3
(d) 4
20. The HCF of two numbers 12908 and 14808 is 672. Their LCM is
(a) 284437
(b) 200043
(c) 60012
(d) 800172
21. Two jars of capacity 50 I and 80 I are filled with oil. What must be the capacity of a mug that can completel y measuretheoil of the wo jars?
(a) 51
(b) 15 I
(c) 101
(d) 201

22 The traffic lights at three different road crossings change after every $48 \mathrm{sec}, 72 \mathrm{sec}$, and 108 sec respectively. If they all changesimultaneously at 8: 20 hours, then at what time will they again change simultaneously?
(a) $8: 27: 12$ hours
(b) $8: 25: 14$ hours
(c) $8: 24: 12$ hours
(d) 8:29:12 hours
23. The LCM of two numbers is 2310 and their HCF is 30. If one of the number is 7×30, Find the other number.
(a) 320
(b) 330
(c) 340
(d) 350
24. What is the least multiple of 7 , which when divided by $2,3,4$, 5 and 6 leaves the remainders $1,2,3,4$ and 5 respectively?
(a) 117
(b) 119
(c) 121
(d) 123
25. Theleast number, which when divided by $12,15,20$ or 54 leaves a remainder 4 in each case is:
(a) 450
(b) 454
(c) 540
(d) 544
26. The maximum number of students among whom 1001 pens and 910 pencils can be distributed in such a way that each student gets same number of pens and samenumber of pencils, is
(a) 91
(b) 910
(c) 1001
(d) 1911
27. A, B and C start running at the same time and from the same point in the same direction in a circular stadium. A completes a round in 252 s , B in 308 s and C in 198s. After what timewill they meet again at the starting point?
(a) 26 min 18 s
(b) 42 min 36 s
(c) 45 min
(d) 46 min 12 s
28. Threemen step-off together from the samespot. Their steps measures $63 \mathrm{~cm}, 70 \mathrm{~cm}$ and 77 cm , respectively. Themini mum distanceeach should cover, so that all can cover thedistance in completesteps, is
(a) 9630 cm
(b) 9360 cm
(c) 6930 cm
(d) 6950 cm
29. Find the largest number of four digits such that on dividing by $15,18,21$ and 24 theremainders are 11 , 14,17 and 20 , respectively.
(a) 6557
(b) 7556
(c) 5675
(d) 7664
30. The total number of integers between 100 and 200, which aredivisibleby both 9 and 6 is
(a) 5
(b) 6
(c) 7
(d) 8

Difficult

1. The largest possible length of a tape which can measure $525 \mathrm{~cm}, 1050 \mathrm{~cm}$ and 1155 cm length of cloths in a minimum number of attempts without measuring thelength of a fraction of thetape'slength is
(a) 25
(b) 105
(c) 75
(d) Noneof these

2 Therearethreedrumswith 1653litre2261 litreand 2527 litre of petrol. Thegreatest possiblesize of the measuring vessel with which wecan measure up the petrol of any drum whileevery timethe vessel must becompletely filled is:
(a) 31
(b) 27
(c) 19
(d) 41
3. Mr. Baghwan wants to plant 36 mango trees, 144 orangetrees and 234 appletrees in his garden. If he wants to plant theequal no. of trees in every row, but the rows of mango, orange and appletrees will be separate, then the minimum number of rows in his garden is:
(a) 18
(b) 23
(c) 36
(d) Can't bedetermined
4. Find the least possible perfect square number which is exactly divisible by $6,40,49$ and 75
(a) 176400
(b) 15000
(c) 175600
(d) 16500
5. Threebells in the Bhootnath templetoll at the interval of 48,72 and 108 seconds individually. If they have tolled all together at 6:00AM then at what time will they toll together after 6: 00AM?
(a) $6: 07: 15 \mathrm{AM}$
(b) $6: 07: 12 \mathrm{AM}$
(c) $4: 04: 12 \mathrm{AM}$
(d) $6: 06: 12 \mathrm{AM}$
6. What is the least possible number which when divided by 18, 35 and 42 leaves 2,19 and 26 as the remainders respectively?
(a) 400
(b) 740
(c) 614
(d) 621
7. Find the HCF of $0.0005,0.005,0.15,0.175,0.5$ and 3.5.
(a) .0005
(b) .005
(c) .05
(d) .5
8. The least number which when divided by $2,3,4,5$ and 6 leaves theremainder 1 in each case. If thesame number is divided by 7 it leaves no remainder. The number is:
(a) 231
(b) 301
(c) 371
(d) 441
9. Threebells, toll at interval of $36 \mathrm{sec}, 40 \mathrm{sec}$ and 48 sec respectively. They start ringing together at particular time. They next toll together after:
(a) 6 minutes
(b) 12 minutes
(c) 18 minutes
(d) 24 minutes
10. Mr. Black has three kinds of wine, of the first kind 403 litres, of thesecond 434 litres and of thethird 465 litres. What is theleast number of full corks of equal sizein which these can bestored without mixing?
(a) 31
(b) 39
(c) 42
(d) 51
11. A bhishek, Bobby and Charlie start from the same point and travel in the same direction round an Island 6 km in circumference. A bhishek travels at the rate of $3 \mathrm{~km} / \mathrm{hr}$, Bobby at therateof $2 \frac{1}{2} \mathrm{~km} / \mathrm{hr}$ and Charlie at the rate of $1 \frac{1}{4} \mathrm{~km} /$ hour. In how many hours will they cometogether again?
(a) 6 hrs
(b) 12 hrs
(c) 24 hrs
(d) 15 hrs
12. The LCM of two numbers is 4 times their HCF. The sum of LCM and HCF is 125 . If one of thenumbers is 100 , then the other number is
(a) 5
(b) 25
(c) 100
(d) 125
13. LCM of two numbers is 120 and their HCF is 10 . Which of thefollowing can bethesum of thosetwo numbers?
(a) 140
(b) 80
(c) 60
(d) 70
14. A fraction becomes $\frac{1}{6}$ when 4 is subtracted from its numerator and 1 is added to its denominator. If 2 and 1 are respectively added to its numerator and thedenominator, it becomes $\frac{1}{3}$. Then, theLCM of the numerator and denominator of thesaid fraction, must be
(a) 14
(b) 350
(c) 5
(d) 70
15. From a point on a circular track 5 km long, A, B and C started running in the same direction at the same timewith speeds of $2 \frac{1}{2} \mathrm{~km} / \mathrm{h}, 3 \mathrm{~km} / \mathrm{h}$ and $2 \mathrm{~km} / \mathrm{h}$, respectively. Then, on thestarting point all threewill meet again after:
(a) 30 h
(b) 6 h
(c) 10 h
(d) 15 h
16. TheHCF of two numbers is 15 and their LCM is 300 . If one of thenumbers is 60, the other is
(a) 50
(b) 75
(c) 65
(d) 100
17. HCF and LCM of two numbers are 7 and 140 , respectively. If the numbers are between 20 and 45, the sum of thenumbers is
(a) 70
(b) 77
(c) 63
(d) 56
18. Thenumber of integersin between 100 and 600 , which are divisible by 4 and 6 both is
(a) 40
(b) 42
(c) 41
(d) 50
19. Theleast number, which when divided by 18,27 and 36 separately leaves remainders 5, 14 and 23 respectively, is
(a) 95
(b) 113
(c) 149
(d) 77
20. Thelargest number of fivedigits which, when divided by $16,24,30$, and 36 leaves thesameremainder 10 in each case, is
(a) 99279
(b) 99370
(c) 99269
(d) 99530

Previous Year Questions

1. The HCF and LCM of two numbers are 44 and 264 respectively. If thefirst number is divided by 2 , then quotient is 44 . The other number is
(a) 147
(b) 528
(c) 132
(d) 264

2 The ratio of two numbers is 5: 6 and their LCM is 480, then their HCF is
(a) 20
(b) 16
(c) 6
(d) 5
3. Product of two coprimenumebers is 117 , then their LCM is
(a) 9
(b) 13
(c) 39
(d) 117
4. The LCM of two numbers is 48. The numbers are in theratio $2: 3$. The sum of the numbers is
(a) 28
(b) 32
(c) 40
(d) 64
5. Theratio of two numbers is 4 : 5 and their HCF is 8 . Then, their LCM is
(a) 130
(b) 140
(c) 150
(d) 160
6. If the HCF and LCM of two consecutive (positive) even numbers is 2 and 84 respectively, then thesum of the numbers is
(a) 30
(b) 26
(c) 14
(d) 34
7. The HCF and LCM of two numbers are 8 and 48 respectively. If one of thenumbers is 24 , then theother number is
(a) 48
(b) 36
(c) 24
(d) 16
8. Theproduct of the LCM and theHCF of two numbers is 24. If the difference of the numbers is 2 , then the greater of the number is
(a) 3
(b) 4
(c) 6
(d) 8
9. The HCF and product of two numbers are 15 and 6300 , respectively. The number of possible pairs of thenumbersis
(a) 4
(b) 3
(c) 2
(d) 1
10. TheLCM of two numbers is 20 times their HCF. The sum of HCF and LCM is 2520 . If one of the numbers is 480 , the other number is
(a) 400
(b) 480
(c) 520
(d) 600
11. HCF of $\frac{2}{3}, \frac{4}{5}$ and $\frac{6}{7}$ is
(a) $\frac{48}{105}$
(b) $\frac{2}{105}$
(c) $\frac{1}{105}$
(d) $\frac{24}{105}$
12. TheLCM and theHCF of thenumbers 28 and 42 are in the ratio
(a) $6: 1$
(b) $2: 3$
(c) $3: 2$
(d) $7: 2$
13. If the LCM and HCF of two expressions are $\left(x^{2}+6 x+\right.$ 8) $(x+1)$ and $(x+1)$ respectively and one of the expression is $x^{2}+3 x+2$, then find theother.
(a) $x^{2}+5 x+4$
(b) $x^{2}-5 x+4$
(c) $x^{2}+4 x+5$
(d) $x^{2}-4 x+5$
14. Two numbers are in theratio $3: 4$. Their LCM is 84 . Then, thegreater number is
(a) 21
(b) 24
(c) 28
(d) 84
15. Two numbers, both greater than 29 , have HCF 29 and LCM 4147. The sum of the numbers is
(a) 966
(b) 696
(c) 669
(d) 666
16. The HCF and LCM of two numbers are 11 and 385 , respectively. The numbers are
(a) 55 and 57
(b) 55 and 77
(c) 44 and 77
(d) 22 and 770
17. TheHCF and LCM of two 2 digit numbers are 16 and 480, respectively. The numbers are
(a) 40,48
(b) 60,72
(c) 64,80
(d) 80,96
18. Find the greatest number which will exactly divide 200 and 320.
(a) 10
(b) 20
(c) 16
(d) 40
19. The greatest number which can divide 1356,1868 , 2764 leaving the same remainder in each case is
(a) 260
(b) 64
(c) 124
(d) 128
20. What is the least number which, when divided by 5 , 6,7 and 8 gives the remainder 3 but is divisible by 9 ?
(a) 1463
(b) 1573
(c) 1683
(d) 1793
21. The greatest number of four digits which when divided by 12,16 and 24 leaveremainder 2,6 and 14 respectively is
(a) 9974
(b) 9970
(c) 9807
(d) 9998
22. What least number must be subtracted from 1936, so that theresulting number when divided by 9,10 and 15 will leave in each case the same remainder 7 ?
(a) 37
(b) 36
(c) 39
(d) 30
23. The largest number, which divides 25,73 and 97 to leave the sameremainder in each case, is
(a) 24
(b) 23
(c) 21
(d) 6
24. Theleast multiple of 13 , which on dividing by $4,5,6$, 7 and 8 leaves remainder 2 in each case, is
(a) 2520
(b) 842
(c) 2522
(d) 840
25. What is the greatest number that will divide 307 and 330 leaving remainders 3 and 7 , respectively?
(a) 19
(b) 16
(c) 17
(d) 23
26. Let theleast number of six digits which when divided by 4, 6, 10and 15 leaves in each casesameremainder 2 beN. Thesum of digits of N is
(a) 3
(b) 5
(c) 4
(d) 6
27. The smallest square number divisible by 10,16 and 24 is:
(a) 900
(b) 1600
(c) 2500
(d) 3600
28. The greatest number, which divides 989 and 1327 leaving remainders 5 and 7 respectively, is
(a) 8
(b) 16
(c) 24
(d) 32
29. Find the largest number of four digits such that on dividing by $15,18,21$ and 24 theremainders are 11 , 14,17 and 20 respectively.
(a) 6557
(b) 7556
(c) 5675
(d) 7664
30. Thegreatest number, that divides 122 and 243 leaving respectively, 2 and 3 as remainders is
(a) 12
(b) 24
(c) 30
(d) 120

Foundation

Solutions

1. (a); Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$

$$
\text { LCM of fractions }=\frac{\text { LCM of numerators }}{\text { HCF of denominators }}
$$

$$
=\frac{\operatorname{LCM}(2,4,5)}{\operatorname{HCF}(3,9,6)}=\frac{20}{3}
$$

2 (d); HCF of two numbers is 8. This means 8 is a factor common to both thenumbers.
\therefore LCM must be multipleof 8. By going through theoptions, 60 cannot bethe LCM sinceit is not a multiple of 8.
3. (a); $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers.
$4 \times 520=52 \times$ Second number
$\therefore \quad$ Second number $=\frac{4 \times 520}{52}=40$
4. (d); HCF \times LCM
$=$ First number \times Second number
$\therefore \quad$ Second number $=\frac{96 \times 1296}{864}=144$
5. (d); $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers.

Then,
LCM $=\frac{216}{6}=36$
6. (a); Let the numbers be $3 x$ and $4 x$

HCF $=x=4$
LCM of $3 x$ and $4 x=12 x=12 \times 4=48$
7. (c); Given, first number $=132$

Since, each of thetwo numbers is a multiple of 12 (given),
$\therefore \quad \mathrm{HCF}=12$ and LCM $=1056 \quad$ (given)
LCM $\times \mathrm{HCF}=$ First number \times Second number
$\therefore \quad$ Second number $=\frac{1056 \times 12}{132}=96$
8 (d); Let thenumbers be $3 x$ and $4 x$ respectively.
HCF $\$ CCM
$=$ First number \times Second number

$$
\therefore \quad 2028=3 x \times 4 x
$$

$$
x^{2}=\frac{2028}{12}=169, x=13
$$

Numbersare $=39,52$
Sum of numbers $=39+52=91$
9. (c); Let thenumbers be $3 x$ and $4 x$.

LCM of $3 x$ and $4 x=12 x$
But given, LCM $=240$
$\therefore \quad 12 x=240$
$\Rightarrow \quad \mathrm{x}=\frac{240}{12}=20$
$\therefore \quad$ Smaller number $=3 x=3 \times 20=60$
10. (b); $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two number
$\therefore \quad$ Second number $=\frac{16 \times 160}{32}=80$
11. (b); $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers
$\therefore \quad \mathrm{LCM}=\frac{4107}{37}=111, \mathrm{ab} \times \mathrm{HCF}=\mathrm{LCM}$ wherea, b are prime factors $\mathrm{ab}=\frac{111}{37}=3$
Prime number pairs $(3,1)$
Numbers $=3 \times \mathrm{HCF}, 1 \times \mathrm{HCF}$
\therefore Numbers are 111 and 37.
Hence, 111 is thegreater number

12 (d); Theratio of two numbers is $3: 4$ and their HCF is 5. Their LCM is

Given that thenumbers arein ratio of $3: 4$,
First number $=3 \times 5=15$
Second number $=4 \times 5=20$
LCM \times HCF $=$ Product of two numbers
$\therefore \quad \mathrm{LCM}=\frac{15 \times 20}{5}=60$
13. (c); Weknow that,

LCM \times HCF $=$ Product of two numbers
$\therefore \quad$ Second number $=\frac{26 \times 1820}{130}=364$
14. (a); Weknow that,

HCF \times LCM $=$ Product of two numbers
$\therefore \quad$ LCM $==\frac{12906 \times 14818}{478}$
LCM $=400086$
15. (b); Required number
$=$ HCF of $\{(110-2)$ and (128-2) $\}$
=HCF of 108 and 126
By Division Method

$$
\begin{gathered}
\text { 108) } 126(1 \\
\frac{108}{18)} 108(6 \\
\frac{108}{x}
\end{gathered}
$$

\therefore Greatest number $=18$
16. (d); TheLCM of 6,12 and $18=36$

36 is a perfect square of 6 .
17. (a); Thesmallest number
$=[$ LCM of $(15,20,35)+\mathrm{k}]$

3	$15,20,35$
5	$5,20,35$
	$1,4,7$

LCM $=4 \times 7 \times 5 \times 3=420$
Smallest number $=420+8=428$
18. (a); $30-\left(\begin{array}{l}5 \\ 35- \\ 5\end{array}\right) \times 7 \times 2$

So, $\mathrm{HCF}=5$
19. (c); Let two numbers be $15 x$ and $15 y$.Where x and y areco-primeto each other.
$\therefore \quad 15 \mathrm{x} \times 15 \mathrm{y}=6300$

$$
\begin{aligned}
& x \times y=\frac{6300}{15 \times 15} \\
& x \times y=28
\end{aligned}
$$

Factors of 28are1, 2, 4, 7, 28
$\therefore \quad 28=1 \times 28$ or 4×7
$\therefore \quad$ Thereareonly two possiblepairs
20. (a); $\mathrm{HCF}+\mathrm{LCM}=403$
$\mathrm{HCF}+12 \mathrm{HCF}=403$
(It is given that LCM $=12 \times \mathrm{HCF}$)
$13 \times \mathrm{HCF}=403$
$\mathrm{HCF}=31$
\because Product of two number isequal to product of their LCM and their HCF.
$\therefore 93 \times$ other number $=31 \times 12 \times 31$
Other number $=\frac{31 \times 12 \times 31}{93}=124$
21. (b); Weneed to find theLCM of $12,15,20,27$.
$12=2^{2} \times 3$
$15=3 \times 5$
$20=2^{2} \times 5$
$27=3^{3}$
LCM $=$ Product of highest powers of factors
$=2^{2} \times 3^{3} \times 5=540$
22 (a); Let x betheremainder then ($25-x$), ($73-x$) and ($97-x$) will beexactly divisibleby the required number.
Required number $=$ HCF of $(73-x)-(25-x)$, $(97$
$-x)-(73-x)$ and $(97-x)-(25-x)$
$=$ HCF of $(73-25),(97-73)$ and ($97-25$)
$=\mathrm{HCF}$ of 48,24 and $72=24$
23. (d); LCM of $12,15,18,27=540$

Largest number of 5 digits $=99999$
On dividing 99999 by 540, remainder $=99$
$\therefore \quad$ Required number $=99999-99=99900$
24. (b); $20-14=25-19=35-29=40-34=6$

Required number $=($ LCM of 20, 25, 35, 40) -6 $=1400-6=1394$
25. (a); To find the biggest measure, wehave to find the HCF of 496, 403 and 713.
HCF of 496, 403 and $713=31$
26. (b); Required time $=$ LCM of 20,30 and 40

10	20,	30,
2	2,	30
	1,	3,

LCM $=10 \times 2 \times 3 \times 2=120$
Hence, the bells will simultaneously ring after 2hi.e., at 1 pm
27. (a); Required time $=\mathrm{LCM}$ of $(200,300,360,450) \mathrm{s}$.

10	$200,300,360,450$
5	$20,30,36,45$
3	$4,6,36,9$
2	$4,2,12,3$
2	$2,1,6,3$
3	$1,1,3,3$
	$1,1,1,1$

\therefore LCM $=10 \times 5 \times 3 \times 2 \times 2 \times 3=1800 \mathrm{~s}$
28. (c); Let thenumbersbeax and $b x$, wherexistheHCF and $b x>a x$.

$$
\begin{array}{ll}
\therefore \quad & \text { LCM }=a b x \\
& a b x=2 b x
\end{array}
$$

$$
\Rightarrow \quad a=2
$$

Again, $a x-x=4$
Putting the valueof a, weget

$$
\begin{array}{rlrl}
& & 2 x-x & =4 \\
\Rightarrow & x & =4
\end{array}
$$

\therefore Smaller number $=a x=2 \times 4=8$
29. (a); All the 6 bells ring together will beLCM of
($2,4,6,8,10$ and 12)

2	$2,4,6,8,10,12$
2	$1,2,3,4,5,6$
3	$1,1,3,2,5,3$
	$1,1,1,2,5,1$

\therefore They will ring together after
$=2 \times 2 \times 2 \times 3 \times 5=120 \mathrm{~s}$
i.e., they will ring together after 2 min
\therefore Number of timethey will ring together in 30
$\min =1+\frac{30}{2}=1+15=16$ times
30. (c); Smallest number of boxes for buns alone
$=\frac{\text { LCM of } 10 \text { and } 8}{\text { Number of bunsin a box }}=\frac{40}{10}=4$

Moderate

1 (a); Capacity of three containers containing diesel is $403 \mathrm{I}, 434 \mathrm{I}$ and 465I, respectively.
Now, maximum capacity of the container that can measure the diesel of the three containers exactly
=HCF of quantity of threecontainers
$=\operatorname{HCF}(403,434,465)$
403) 434 (1

$$
\begin{aligned}
& \frac{403}{31)} 403(13 \\
& \frac{403}{x}
\end{aligned}
$$

A gain, 31) 465(15

So, Capacity of container $=31 \mathrm{~L}$
2 (b); Timetaken by $\mathrm{A}=\frac{30}{5} \mathrm{~h}$
Timetaken by $B=\frac{30}{7} h$
Timetaken by $\mathrm{C}=\frac{30}{8} \mathrm{~h}$
Timetaken by all to cometogether

$$
\begin{aligned}
& =\text { LCM of } \frac{30}{5}, \frac{30}{7} \text { and } \frac{30}{8} \\
& =\frac{\text { LCM of } 30,30 \text { and } 30}{\text { HCF of } 5,7 \text { and } 8}=\frac{30}{1}=30 \mathrm{~h}
\end{aligned}
$$

3. (b); LCM of 24,36 and 54

2	$24,36,54$
2	$12,18,27$
2	$6,9,27$
3	$3,9,27$
3	$1,3,9$
3	$1,1,3$
	$1,1,1$

Required time $=$ LCM of 24,36 and $54 \mathrm{~s}=216 \mathrm{~s}$
$=\frac{216}{60}=3 \frac{36}{60} \mathrm{~min}$
$=3 \mathrm{~min} 36 \mathrm{~s}$
\therefore Timewhen they will changesimultaneously
$=10: 15: 00+3 \mathrm{~min} 36 \mathrm{~s}$
$=10: 18: 36 \mathrm{am}$
4. (c); Let the numbers be 48a and 48b, where a and b arecoprimes,
$\therefore \quad 48 \mathrm{a}+48 \mathrm{~b}=384$
$\Rightarrow \quad 48(a+b)=384$
$\Rightarrow \quad a+b=\frac{384}{48}=8$
Possible valid pairs of a and b satisfying this condition are $(1,7)$ and $(3,5)$.
$\therefore \quad$ Numbers are $48 \times 1=48$
and $48 \times 7=336$ or
or, $\quad 48 \times 3=144$
and $\quad 48 \times 5=240$
$\therefore \quad$ Required difference $=336-48=288$
or $\quad 240-144=96$
5. (c); Let the numbers bea and b.

According to thequestion,
$a+b=45$
Again, $a-b=\frac{1}{9}(a+b)$
$\Rightarrow \mathrm{a}-\mathrm{b}=\frac{1}{9} \times 45 \Rightarrow \mathrm{a}-\mathrm{b}=5$
Addingequ. (i) and (ii), weget
$2 \mathrm{a}=50$
$a=\frac{50}{2}=25$
On putting the value of a Eq. (i) weget
$25+b=45$
$\Rightarrow \mathrm{b}=45-25=20$,
$a=25$ and $b=20$
\therefore LCM of 25 and 20 .

5	25,20
5	5,4
	1,4

LCM $=5 \times 5 \times 4=100$
6. (c); Let the numbers be 4 a and 4 b where a and b are coprimes.
LCM $=4 a b$

$$
\begin{array}{ll}
\therefore & \frac{(4 a+4 b)}{4 a b}=\frac{7}{12} \\
\Rightarrow & \frac{1}{a}+\frac{1}{b}=\frac{7}{12}=\frac{1}{3}+\frac{1}{4} \\
\Rightarrow & a=3, b=4 \\
\therefore & \text { First number }=(4 \times 3)=12 \\
\therefore & \text { Second number }=(4 \times 4)=16 \\
\text { Smaller number }=12
\end{array}
$$

7. (b); Minimum number of students $=\mathrm{LCM}$ of $6,8,10$.

2	$6,8,10$
2	$3,4,5$
2	$3,2,5$
	$3,1,5$

LCM $=2 \times 2 \times 2 \times 3 \times 5=120$
Hence, the minimum number of students $=120$
8 (a); Let thenumber be $2 x, 3 x$ and $4 x$, respectively.
$\therefore \mathrm{HCF}=\mathrm{x}=12$
\therefore Numbers $2 \times 12=24,3 \times 12=36,4 \times 12=48$
LCM of $24,36,48$

2	$24,36,48$
2	$12,18,24$
2	$6,9,12$
2	$3,9,6$
3	$3,9,3$
3	$1,3,1$
	$1,1,1$

\therefore LCM $=2 \times 2 \times 2 \times 2 \times 3 \times 3=144$
9. (d); Given,
$3^{3^{333}}+1$ and $3^{3^{344}}+1$ or $27^{333}+1^{333}$ and $27^{334}+1^{334}$
Now, $x^{m}+a^{m}$ is divisible by $(x+a)$ when m is odd.
$27^{333}+1^{333}$ is divisible by $(27+1)=28$
Similarly, $27^{334}+1^{334}$ is never divisibleby ($x+a$)
So, the greatest common divisor between

$$
\left(3^{3^{333}}+1\right) \text { and }\left(3^{3^{334}}+1\right) \text { is1. }
$$

10. (b); Maximum quantity in each can
$=H C F$ of (21, 42 and 63) $L=21 L$
By Division Method

$H C F=21 \mathrm{~L}$
\therefore Least number of cans
$=\frac{21}{21}+\frac{42}{21}+\frac{63}{21}=1+2+3=6$ cans .
11. (c); To find the minimum number of rows, we determinetheHCF of 24,36 and 60 .
$\therefore \quad$ HCF of 24,36 and $60=12$
Thus, 12 fruits arethere in a row.
$\therefore \quad$ N umber of rows $=\frac{24}{12}+\frac{36}{12}+\frac{60}{12}$

$$
=2+3+5=10
$$

12 (c); Let thenumbers bep, q and r which are coprime to one another.
Now, pq = 551 and q r $=1073$
$\mathrm{q}=\mathrm{HCF}$ of 551 and 1073 551) 1073 (1 $\frac{551}{522)} 551(1$ 522 29) 522 (18

$$
\begin{aligned}
& \therefore q=29 \quad \therefore \quad \mathrm{p}=\frac{\frac{521}{29}}{29}=19 \\
& \text { and } \quad r=\frac{1073}{29}=37
\end{aligned}
$$

$\therefore \quad$ Sum of threenumbers.

$$
=19+29+37=85
$$

13. (a); Number of books in each stack $=$ HCF of (336, 240, 96)

$$
\text { 240) } 336(1
$$

$$
\begin{gathered}
\frac{240}{96)} 240(2 \\
192
\end{gathered}
$$

$$
\text { 48) } 96(2
$$

$$
\frac{96}{x}
$$

\therefore Number of books in each stack $=48$
\therefore Total number of stacks $=\frac{336}{48}+\frac{240}{48}+\frac{96}{48}$

$$
=7+5+2=14
$$

14. (c); Givn, $\mathrm{HCF}=3, \mathrm{LCM}=105$

Now, let thenumbers be 3 a and 3 b ,
$\therefore \quad 3 a+3 b=36$
$\Rightarrow a+b=12$
and LCM 3ab = 105
DividingEq. (i) by Eq. (ii), wehave
$\frac{a}{3 a b}+\frac{b}{3 a b}=\frac{12}{105}$
$\Rightarrow \frac{1}{3 \mathrm{a}}+\frac{1}{3 \mathrm{~b}}=\frac{4}{35} \Rightarrow \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=\frac{12}{35}$
15. (d); Length of thefloor $=15 \mathrm{~m} 17 \mathrm{~cm}=1517 \mathrm{~cm}$

Breadth of the floor $=9 \mathrm{~m} 2 \mathrm{~cm}=902 \mathrm{~cm}$
Area of the floor $=1517 \times 902 \mathrm{~cm}^{2}$
The number of square tiles will be least, when thesize of each tile is maximum.
\therefore Size of each tile $=$ H CF of 1517 and 902

$\text { 902) }{ }_{902}^{1517(1}$
615)902(1
615
287)615(2
574
41)287(7
$\underline{287}$

HCF $=41$
\therefore Required number of tiles
$=\frac{\text { A reaof thefloor }}{\text { A rea of each squaretile }}=\frac{1517 \times 902}{41 \times 41}=814$
16. (d); Given, HCF of a and $b=12$

Let the numbers be $12 x$ and $12 y$, where x and y arecoprime.
But given $a>b>12$
Smallest coprime pair for the abovecondition
$=(3,2)$
$\therefore \quad a=36$ and $b=24$
17. (b); Given,
$P=2^{3} \times 3^{10} \times 5, \quad Q=2^{5} \times 3 \times 7$
[$\because 2^{3}$ and 3 is common factor to both P and Q]
$\mathrm{HCF}=2^{3} \times 3$
18. (b); $\mathrm{HCF}=12$

Numbers $=12 \mathrm{a}$ and 12 b where, a and b are coprimes
$\therefore 12 a+12 b=84 \Rightarrow 12(a+b)=84$
$\Rightarrow \mathrm{a}+\mathrm{b}=\frac{84}{12}=7$
$\therefore \quad$ Possible pairs of numbers satisfying this condition $=(1,6),(2,5)$ and $(3,4)$
Hence, pairs of required numbers $=3$.
19. (c); HCF of two numbers $=4$

Hence, thenumbers can beexpressed as $4 a$ and 4 b , where a and b arecoprime,
$4 a+4 b=36, \quad a+b=9$
Now, possible pairs satisfying abovecondition are $(1,8),(4,5),(2,7)$.
\therefore 3pairsarepossible
20. (a); Weknow that,

HCF \times LCM $=$ Product of two numbers
$\therefore \quad$ LCM $=\frac{12908 \times 14808}{672}=284437$
21. (c); Factors of $50=5^{2} \times 2$

Factors of $80=5^{1} \times 2^{4}$
H.C.F. of $50 \& 80=5^{1} \times 2^{1}=10$ ।

Thecapacity of themug must be 10I
22. (a); LCM of 48,72 and $108=432$

The traffic lights will change simultaneously after 432 seconds or 7 m 12 secs.
\therefore They will changesimultaneously at
$=8: 20$ hours $+7 \mathrm{~m}+12 \mathrm{sec} .=8: 27: 12 \mathrm{hrs}$.
23. (b); Product of two numbers $=$ H.C.F. \times L.C.M.
$7 \times 30 \times$ Second number $=30 \times 2310$
Second number $=\frac{30 \times 2310}{7 \times 30}=330$
24. (b); LCM of $2,3,4,5$ and $6=60$

Other numbers divisible by $2,3,4,5,6$ are 60k, wherek is a positiveinteger. Since 2-1=1,3-2 $=1,4-3=1,5-4=1$ and $6-5=1$, theremainder in each case is less than the divisor by 1 . Now, therequired number is to bedivisibleby 7 . Hence, we must choose the least value of k which will make($60 \mathrm{k}-1$) divisibleby 7 . Putting k equal to 1 , 2,3 etc. in succession, wefind that k should be 2
\therefore Therequired number $=60 \mathrm{k}-1$

$$
=60 \times 2-1=119
$$

25. (d); Required number
$=($ LCM of $12,15,20 \& 54)+4$
$=540+4=544$
26. (a); Required number of students $=\mathrm{H}$ CF of 1001 and 910
910) 1001 (1

910
91) 910(10

Hence, $\mathrm{HCF}=91$
27. (d); Required time $=$ LCM of 252,308 and 198 s .

2	$252,308,198$
2	$126,154,99$
7	$63,77,99$
9	$9,11,99$
11	$1,11,11$
	$1,1,1$

\therefore LCM $=2 \times 2 \times 7 \times 9 \times 11$
$=2772 \mathrm{~s}=\frac{2772}{60}$
$=46 \frac{1}{5} \mathrm{~min}=46 \mathrm{~min} 12 \mathrm{~s}$
28. (c); Minimum distanceeach should cover, so that all can cover thedistance in completesteps
$=$ LCM of $(63,70,77)=6930 \mathrm{~cm}$
29. (b); LCM of $15,18,21,24$

2	$15,18,21,24$
2	$15,9,21,12$
2	$15,9,21,6$
3	$15,9,21,3$
3	$5,3,7,1$
5	$5,1,7,1$
7	$1,1,7,1$
	$1,1,1,1$
LCM $=2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7=2520$	

Largest number of four digit $=9999$
2520) 9999(3
$\frac{7560}{2439}$
Required number $=9999-2439-4=7556$
Where, $4=\left\{\begin{array}{c}15-11=4 \text { or } \\ 18-14=4 \text { or } \\ 21-17=4 \text { or } \\ 24-20=4\end{array}\right\}$
30. (b); LCM of 9 and $6=18$

Total numbers from 1 to 200 divisibleby $18=11$
Total numbers from 1 to 100 divisibleby $18=5$
\therefore Required numbers from 100 to 200
divisibleby $18=11-5=6$

Difficult

1. (b); Thelargest possiblelength of thetape $=$ HCF of 525, 1050, $1155=105$
Hence(b) is thecorrect answer.
2. (c); The maximum capacity of the vessel $=$ HCF of 1653,2261 and $2527=19$
Hence, (c) is thecorrectoption.
3. (b); Minimum number of rows means max. number of trees per row, also equal number of trees per row is required so weneed to find the HCF of 36, 144 and 234 to find themaximum number of trees in a row.
Thus HCF of 36,144 and $234=18$
Thus the number of rows =

$$
=\frac{\text { Total no. of trees }}{\text { No.of treesinarow }}=\frac{36+144+234}{18}=23
$$

Hence(b) is correct answer.
4. (a); The required number must be divisible by the given numbers so it can betheLCM or itsmultiple number.
Now the LCM of 6, 40, 49 and 75
$=2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 7 \times 7$
But the required number is a perfect square
ThustheLCM must bemultiplied by $2 \times 3=6$.
Thustherequired number
$=(2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 7 \times 7) \times(2 \times 3)$
$=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 7 \times 7$
$=176400$
5. (b); The three bells stoll together only at the LCM of thetimes they toll individually.
Thus the LCM of 48,72 and 108 is 432 seconds.
Thereforeall thebells will toll together at 6:07:
12AM
($\because 432$ seconds $=7$ minutes 12 seconds)
6. (c); Sincethedifferencebetween the divisors and the respectiveremainders is same.
Hencetheleast possiblenumber
$=($ LCM of 18,35 and 42$)-16$
$=630-16[\because(18-2)=(35-19)=(42-26)=16]$
$=614$
7. (a); $0.0005 \Rightarrow 5$
$0.0050 \Rightarrow 50$
$0.1500 \Rightarrow 1500$
$0.1750 \Rightarrow 1750$
$0.5000 \Rightarrow 5000$
$3.5000 \Rightarrow 35000$
ThentheHCF of 5, 50, 1500, 1750, 5000 and 35000 is 5 .
So the HCF of thegiven number is 0.0005 (since there are four digits in all the adjusted (or equated) decimal places.)
8. (b); Therequired number $=(L C M$ of $2,3,4,5,6) K+$ $1=71=60 \mathrm{~K}+1=71$
$\Rightarrow \frac{60 \mathrm{k}+1}{7}=1$
Now put the least possible value of k such that must be a positive integer. Henceat $k=5, l$ is an integer. Thus, the required value is $60 \times 5+1=$ 301.
9. (b); Therequired time $=$ LCM of 36,40 and 48
$=720$ seconds $=12$ minutes
Hence, (b) is therightchoice.
10. (c); Minimum number of corks $=$
$\frac{403+434+465}{\operatorname{HCF} \text { of }(403,434,465)}=\frac{1302}{31}=42$
11. (c); Time taken for each of three persons is respectively $\frac{6}{3}, \frac{6}{2 \frac{1}{2}}$ and $\frac{6}{1 \frac{1}{4}}$ hrs
i.e, $\frac{2}{1}, \frac{12}{5}$ and $\frac{24}{5}$ hrs.

So, it is required to find the LCM of
$\frac{2}{1}, \frac{12}{5}, \frac{24}{5}=\frac{24}{1}=24 \mathrm{hr}$
Hence, (c) is theright choice.
12. (b); Let LCM bex and HCF bey.

According to thequestion,
LCM $=4 \times \mathrm{HCF}$
$\Rightarrow \mathrm{x}=4 \mathrm{y}$
According to thequestion,
LCM + HCF $=125$
$x+y=125$
Putting the valueof x, weget
$5 y=125$
$\Rightarrow \mathrm{y}=25$
$\therefore \quad \mathrm{HCF}=25$ amd LCM $=4 \times 25=100$
Weknow that, HCF \times LCM
$=$ First number \times Second number
Second number $=\frac{\text { HCF } \times \text { LCM }}{\text { Firstnumber }}$

$$
=\frac{100 \times 25}{100}=25
$$

13. (d); Let the numbers be 10a and 10b, where a and b arecoprime
\therefore LCM of 10a and $10 b=10 a b$
$\Rightarrow 10 a b=120 \Rightarrow a b=12$
Possiblepairs $=(3,4)$ or $(1,12)$
Sum of thenumbers:
$(\mathrm{a}, \mathrm{b})=(3,4)$:
$(3 \times 10)+(4 \times 10)=30+40=70$
$(\mathrm{a}, \mathrm{b})=(1,12)$:
$(1 \times 10)+(12 \times 10)$
$=10+120=130$
14. (d); Let theoriginal fraction be $\frac{x}{y}$.

According to thequestion,
$\frac{x-4}{y+1}=\frac{1}{6} \Rightarrow 6 x-24=y+1$
$\Rightarrow 6 x-y=25$
Again, according to thequestion,
$\frac{x+2}{y+1}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{x}+6=\mathrm{y}+1$
$\Rightarrow 3 x-y=-5$

On subtracting Eq. (ii) from Eq. (i), we get
$6 x-y=25$

$3 x-y=-5$
$3 x=30$

$x=\frac{30}{3}=10$
on putting the value of x in Eq. (i), weget
$6 \times 10-y=25$
$\Rightarrow-\mathrm{y}=25-60 \Rightarrow-\mathrm{y}=-35$
$\Rightarrow y=35$
$\therefore \mathrm{x}=10$ and $\mathrm{y}=35$
LCM of 10 and 35

5	10,35
	2,7

LCM $=2 \times 7 \times 5=70$
15. (c); A makes onecompleteround in $5 /(5 / 2)$
$=2 \mathrm{~h} \quad\left(\because\right.$ Speed $\left.=\frac{\text { Distance }}{\text { Time }}\right)$
B completes in $\frac{5}{3} h$ and C completes in $\frac{5}{2} h$.
Hence, the required time
$=\operatorname{LCM}$ of $\left(2, \frac{5}{3}\right.$ and $\left.\frac{5}{2}\right) \mathrm{h}$
$=\frac{\operatorname{LCM} \text { of } 2,5,5}{\mathrm{HCF} \text { of } 3,2}=\frac{10}{1}=10 \mathrm{~h}$
Hence, A, B and C will meet after $10 h$.
16. (b); By theTechnique

First number \times Second number $=\mathrm{HCF} \times$ LCM
\therefore Second number $=\frac{15 \times 300}{60}=75$
17. (c); Let the numbers be 7 a and 7 b , wherea and bare coprime. Now, LCM of 7a and 7b=7ab

$$
\begin{array}{ll}
\therefore \quad & 7 a b=140 \\
& a b=\frac{140}{7}=20
\end{array}
$$

Now, required values of a and b whoseproduct is 20 are 4 and 5.
Numbers are 28 and 35 and they lie between 20 and 45.
Sum of thenumbers $=28+35=63$
18. (c); Weknow that

Numbers divisible by 4 and 6 will bemultiples of theLCM of 4 and 6 i.e., 12
Now, numbers from 1 to 600 divisibleby

$$
12=\frac{600}{12}-1=49
$$

(minus 1 because 600is excluded)
Now, numbers divisible by 12 from 1 to 100

$$
=\frac{100}{12}=8
$$

\therefore Numbers divisibleby between 100 and 600

$$
=49-8=41
$$

19. (a); 2

2	$18,27,36$
2	$9,27,18$
3	$9,27,9$
3	$3,9,3$
3	$1,3,1$
	$1,1,1$

LCM $=2 \times 2 \times 3 \times 3 \times 3=108$
Required number
$=[$ LCM of $(18,27,36)]-k=108-13=95$
$\{$ where, $\mathrm{k}=18-5$ or $27-14$ or $36-23=13\}$
20. (b); LCM of $16,24,30$ and 36 .

2	$16,24,30,36$
2	$8,12,15,18$
2	$4,6,15,9$
2	$2,3,15,9$
3	$1,3,15,9$
3	$1,1,5,3$
5	$1,1,5,1$
	$1,1,1,1$

LCM $=2 \times 2 \times 2 \times 3 \times 2 \times 5 \times 3=720$
Weknow that largest five digit number is 99999
720) 99999 (138
$\frac{720}{2799}$
2160
6399 5760

639
Required number $=(99999-639)+10=99370$

Previous Year Solutions

1. (c); Here, first number $=2 \times 44=88$,
$\mathrm{HCF}=44$ and $\mathrm{LCM}=264$.
By the formula
1st number $\times 2$ nd number $=\mathrm{HCF} \times$ LCM
$\Rightarrow 88 \times 2$ nd number $=44 \times 264$
$\Rightarrow 2$ nd number $=\frac{264 \times 44}{88}=132$
\Rightarrow 2nd number $=132$
2. (b); Let the common ratio $=x$

Then, numbers are $5 x$ and $6 x$
Now, HCF of thesetwo numbers is x
By the technique
LCM \times HCF $=$ Product of two numbers
$\Rightarrow 480 \times x=5 x \times 6 x \Rightarrow 480 x=30 x^{2}$
$\therefore \mathrm{x}=16 \quad \therefore \mathrm{HCF}$ is 16
3. (d); Weknow that,

LCM of two coprimes is equal to their product, Hence, LCM =117
4. (c); If the numbers be $2 x$ and $3 x$, then LCM of $2 x$ and $3 x=6 x$
LCM $=48$
$\therefore 6 x=48 \Rightarrow x=\frac{48}{6}=8$
\therefore Thenumbersare $(8 \times 2=16)$ and ($8 \times 3=24$), respectively.
\therefore Sum $=16+24=40$
5. (d); Let the numbers be $4 x$ and $5 x$.
$\therefore \mathrm{HCF}=8=x$
First number $=8 \times 4=32$
Second number $=8 \times 5=40$
\therefore LCM of $32,40=160$
6. (b); Let the number be $2 a$ and $2 b$, where a and b are coprime
$\therefore \quad L C M=2 a b$

$$
2 \mathrm{ab}=84
$$

$$
a b=42=6 \times 7
$$

\therefore Numbers are 12 and 14 .
\therefore Sum $12+14=26$
7. (d); By thetechnique

HCF \times LCM $=$ First number \times Second number
\therefore Second number $=\frac{8 \times 48}{24}=16$
8. (c); Let thelarger number bea.

Smaller number $=a-2$
HCF \times LCM $=$ Product of two numbers
$24=a(a-2)$
$\Rightarrow a^{2}-2 a-24=0$
$\Rightarrow a^{2}-6 a+4 a-24=0$
$\Rightarrow a(a-6)+4(a-6)=0$
$\Rightarrow a=6,-4$
But $a \neq-4 \quad \therefore a=6$
9. (c); Let the numbers areax and bx where $=\mathrm{HCF}=15$
ATQ,
$a x \times b x=6300$
$\mathrm{ab}=\frac{6300}{225}=28$
\therefore possible pairs $\Rightarrow 28 \times 1,7 \times 4$
Hencetherearetwo pairs.
10. (d); Let LCM bex and HCF bey.

According to thequestion.
LCM $=20 \times \mathrm{HCF}$
i.e., $x=20 y$
and $x+y=2520$
Putting the value of x, weget
$20 \mathrm{y}+\mathrm{y}=2520$
$\Rightarrow 21 y=2520$
$\Rightarrow \mathrm{y}=\frac{2520}{21}=120$
\therefore LCM $=\mathrm{x}=120 \times 20=2400$
LCM \times HCF $=$ Product of two numbers
$2400 \times 120=48 \times x, \quad x=600$
11. (b); Given fractions $=\frac{2}{4}, \frac{4}{5}$ and $\frac{6}{7}$

HCF of fractions $=\frac{\text { HCF of numerators }}{\text { LCM of denominators }}$

$$
=\frac{\operatorname{HCF}(2,4,6)}{\operatorname{LCM}(3,5,7)}=\frac{2}{105}
$$

12. (a); LCM of 28 and 42

2	28,42
2	14,21
7	7,21
	1,3

\therefore LCM $=2 \times 2 \times 7 \times 3=84$
HCF of 28 and 42
By Division method

$$
\text { 28) } 42(1)
$$

$\therefore \mathrm{HCF}=14$
\therefore Ratio $=\frac{\mathrm{LCM}}{\mathrm{HCF}}=\frac{84}{14}=\frac{6}{1}=6: 1$
13. (a); $\operatorname{LCM}=\left(x^{2}+6 x+8\right)(x+1)$
or $(x+4)(x+2)(x+1)$
HCF $=(x+1)$
1st expression $=x^{2}+3 x+2$
or $(x+1)(x+2)$
Asweknow that,
product of two expressions $=\mathrm{LCM} \times \mathrm{HCF}$
$(x+1)(x+2) \times 2$ nd expression
$=(x+4)(x+2)(x+1)(x+1)$
2nd expressions
$=\frac{(x+4)(x+2)(x+1)(x+1)}{(x+1)(x+2)}$
$=(x+4)(x+1)=x^{2}+4 x+x+4=x^{2}+5 x+4$
14. (c); Let the numbers be $3 x$ and $4 x$.

LCM of $3 x$ and $4 x=12 x$
Now, LCM =84
Then, $12 x=84$
$\Rightarrow \mathrm{x}=\frac{84}{12}=7$
\therefore Greatest number $=4 \mathrm{x}=4 \times 7=28$
15. (b); Let the number be 29a and 29b, respectively wherea and barecoprimes
LCM of 29a and $29 b=29 a b$
Now, $29 a b=4147$
$\therefore \quad a b=\frac{4147}{29}=143$
Thus, $\mathrm{ab}=11 \times 13$
First number $=(29 \times 11)=319$
Second number $=(29 \times 13)=377$
\therefore Sum of numbers $=319+377=696$
16. (b); Factors of 11 and 385 are
$11=11 \times 1, \quad 385=11 \times 5 \times 7$
\therefore LCM $=11 \times 5 \times 7=385$
HCF $=11$
First number $=11 \times 5=55$
Second number $=11 \times 7=77$
$\Rightarrow(11,385)$ or $(55,77)$
17. (d); HCF of the wo digit numbers $=16$

Hence, let thenumbers be 16 a and 16 b .
where, a and b are coprimes.
Now, HCF \times LCM $=$ Product of two numbers.
$\Rightarrow 16 \mathrm{a} \times 16 \mathrm{~b}=16 \times 480$
$\Rightarrow \mathrm{ab}=\frac{16 \times 480}{16 \times 16}=30$
Possiblepairs of a and b satisfying the condition $\mathrm{ab}=30$ are $(3,10),(5,6),(1,30),(2,15)$. Sincethe
numbers are of 2 digit each.
Hence, required pair is $(5,6)$.
First number $=16 \times 5=80$
Second number $=16 \times 6=96$
18. (d); Greatest number that can exactly divide 200 and
$320=\mathrm{HCF}$ of 200 and $320=40$
200)320(1

$$
\left.\frac{200}{120}\right) 200(1
$$

120
80)120(1
80) 80 (2
$\frac{80}{x}$
Hencethegreatest number is 40 .
19. (d); Required number $=\mathrm{HCF}$ of
\{(1868-1356), (2764-1868), (2764-1356)\}
$=$ HCF of $(512,896,1408)$
512)896(1

512
384)512(1

384
128/384(3 $\frac{384}{x}$
Hence, required number is 128 .
20. (c); LCM of $5,6,7,8=35 \times 24=840$

Required number $=840 x+3$, such that it is exactly divisibleby 9.

By hit and Trial

for $x=2$, it is divisibleby 9 .
Required number $=840 x+3=840 \times 2+3=1683$
(these type of questions can be solved with the
help of given options)
(Out of all thegiven options, only 1683isdivisible by 9.$)$
21. (a); LCM of 12,16 and 24

2	$12,16,24$
2	$6,8,12$
3	$3,4,6$
2	$1,4,2$
2	$1,2,1$
	$1,1,1$

$=2 \times 2 \times 2 \times 2 \times 3=48$
48) 9999 (208

\therefore Greatest four digit numbers divisibleby 48 9999-15=9984
\therefore Required number $=9984-10=9974$
(10 is the difference of each remainder)

22 (c); LCM of 9,10 and 15

2	$9,10,15$
3	$9,5,15$
3	$3,5,5$
5	$1,5,5$
	$1,1,1$
$\therefore \quad$ LCM $=2 \times 3 \times 3 \times 5=90$	

90) $1936(21$
$\frac{180}{136}$
$\frac{90}{46}$
\therefore Required number $=46-7=39$
23. (a); Required number
$=$ HCF of [| 25-73| ,| 73-97| , 97-25|]
$=$ HCF of $\{48,24,72\}$
HCF $=2 \times 2 \times 2 \times 3=24$
$\therefore \mathrm{HCF}=24$
\therefore Largest number $=24$
24. (c); LCM of $4,5,6,7$ and $8=840$

Required number $=840 x+2$
By Hitand Trial
Putting $x=3$
we get $=840 x+2=840 \times 3+2=2522$
2522 is a multiple of 13 .
25. (a); Greatestnumber
$=\mathrm{HCF}$ of $[(307-3),(330-7)]$
$=\mathrm{HCF}$ of $(304,323)$

\therefore Required number $=19$
26. (b); Least six digit number is 100000

LCM of $4,6,10,15$

2	$4,6,10,15$
2	$2,3,5,15$
3	$1,3,5,15$
5	$1,1,5,5$
	$1,1,1,1$

\therefore LCM $=2 \times 2 \times 3 \times 5=60$
60) 100000 (1666

60
400
360
400
$\frac{360}{400}$
$\frac{360}{40}$
\therefore Required number

$$
=100000+(60-40)+2=100022
$$

\therefore Sum of the digits of

$$
N=1+0+0+0+2+2=5
$$

27. (d); LCM of $10,16,24$

2	$10,16,24$
2	$5,8,12$
2	$5,4,6$
	$5,2,3$

\therefore LCM of $2^{2} \times 2^{2} \times 5 \times 3$
[\because powersmust beequal for number to beperfect square]
\therefore Required number
$=2^{2} \times 2^{2} \times 5^{2} \times 3^{2}=4 \times 4 \times 25 \times 9=3600$
28. (c); By thetechnique

Required number
$=$ HCF of [(989-5), (1327-7)]
$=$ HCF of (984, 1320)
984) $1320(1$

984
336) 984 (2

672
312) 336 (1

$$
\frac{312}{24) 312(13}
$$

$\frac{312}{x}$
$\therefore \mathrm{HCF}=24$
\therefore Required number $=24$
29. (b); LCM of $15,18,21,24$

2	$15,18,21,24$
2	$15,9,21,12$
2	$15,9,21,6$
3	$15,9,21,3$
3	$5,3,7,1$
5	$5,1,7,1$
7	$1,1,7,1$
	$1,1,1,1$

LCM $=2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7=2520$
Largest number of four digit $=9999$
2520) 9999(3
$\frac{7560}{2439}$
Required number $=9999-2439-4=7556$
where, $4=\left\{\begin{array}{c}15-11=4 \text { or } \\ 18-14=4 \text { or } \\ 21-17=4 \text { or } \\ 21-20=4\end{array}\right\}$
30. (d); Required number $=$ HCF of [(122-2),(243-3)] i.e., HCF of $(120,240)$

By Division Method

120) $240(2$
$\frac{240}{x}$
\therefore Required number $=120$

Chapter

Surds and Indices

Index:
a×a×a×a×a \qquad mtimes
or ($a \times a \times a \times$. \qquad mtimes) $\times(a \times a \times a \times$ \qquad ntimes)
i.e $a \times a \times a \times$ \qquad $(m+n)$ times
Important formulae: If $\mathrm{a}>0, \mathrm{a} \neq 1, \mathrm{~m}$ and n are integers then
(i) $a^{m} \times a^{n}=a^{m+n}$
(ii) $a^{m} \times a^{n} \times a^{Q}=a^{m+n+Q}$
(iii) $\left(a^{m}\right)^{n}=a^{m n}$
(iv) $\frac{a^{m}}{a^{n}}=a^{m-n}$
(v) $a^{0}=1$
(vi) $a^{-m}=\frac{1}{a^{m}}$
(vii) $a^{m^{n}}=a^{(m)^{n}}$
(viii) $(a b)^{n}=a^{n} b^{n}$

Surd :If 'a' is a rational number and nis a positiveinteger such then ${ }^{\text {th }}$ root of ' a ', i.e., $a^{1 / n} \sqrt[n]{a}$ is an irrational number, then $\mathrm{a}^{1 / \mathrm{n}}$ is called a surd. In other words, an irrational root of a rational number is called a surd.

Example: $\quad \sqrt{2}, \sqrt[3]{4}, \sqrt[4]{18}, \sqrt[7]{4}, \sqrt[3]{9}$ etc. aresurds
i.e. we can say that every number expressed in a surd is an irrational number.

Types of surds:

(i) PureSurd: $\sqrt{7}, 3 \sqrt{11}, \sqrt[4]{125}$ arepuresurds.
(ii) Mixed Surd: $3 \sqrt{2}, 7 \sqrt[2]{11}, \sqrt{32}$ aremixed surds.
(iii) Similar surds: $3 \sqrt{3}, \sqrt{3}$ and $6 \sqrt{5}, 7 \sqrt{125}=35 \sqrt{5}$
order of surds: $\sqrt{7}, \sqrt[3]{4}, \sqrt[4]{8}, \sqrt[5]{125}$ are respectively surds of order $2,3,4$ and 5
Conjugate of surds: Two binomial surds which differ only in sign (+or-) between theterms connecting them, are known as conjugatesurds
Example: Conjugateof $5+\sqrt{7}$ is $5-\sqrt{7}$
Condition for two Surds to be equal :If a, b, c, d areall rational numbers and b and d arenot perfect squarethen $a+\sqrt{b}=c+\sqrt{d}, \quad$ i.e. $a=c$ and $b=d$

Square root of surd of $a+\sqrt{b}$ form

$$
\sqrt{a+\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^{2}-b}}{2}}+\sqrt{\frac{a-\sqrt{a^{2}-b}}{2}}, \quad \sqrt{a-\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^{2}-b}}{2}}-\sqrt{\frac{a-\sqrt{a^{2}-b}}{2}}
$$

Important formulae:

(i) $a^{-P}=\frac{1}{a^{p}}$
(ii) If $a^{y}=n$ then $a=(n)^{1 / y}$
(iii) If $a^{x}=b^{y}$ then $a=(b)^{y / x}$
(iv) $x^{n}=a, x=\sqrt[n]{a}$
(v) $\sqrt[n]{a}=a^{1 / 1}$
(vi) $(\sqrt[n]{a})^{m}=a^{\frac{m}{n}}$
(vii) $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}$

Types of Questions

1. Thegreatestamong $\sqrt{7}-\sqrt{5}, \sqrt{5}-\sqrt{3}$,
$\sqrt{9}-\sqrt{7}, \sqrt{11}-\sqrt{9}$
Sol. On rationalising
$\frac{(\sqrt{7}-\sqrt{5}) \times(\sqrt{7}+\sqrt{5})}{\sqrt{7}+\sqrt{5}}, \frac{(\sqrt{5}-\sqrt{3}) \times(\sqrt{5}+\sqrt{3})}{\sqrt{5}+\sqrt{3}}$,
$\frac{(\sqrt{9}-\sqrt{7}) \times(\sqrt{9}+\sqrt{7})}{\sqrt{9}+\sqrt{7}}, \frac{(\sqrt{11}-\sqrt{9}) \times(\sqrt{11}+\sqrt{9})}{(\sqrt{11}+\sqrt{9})}$
$=\frac{2}{\sqrt{7}+\sqrt{5}}, \frac{2}{\sqrt{5}+\sqrt{3}}, \frac{2}{\sqrt{9}+\sqrt{7}}, \frac{2}{\sqrt{11}+\sqrt{9}}$
smallestone $=\frac{2}{\sqrt{11}+\sqrt{9}}=\sqrt{11}-\sqrt{9}$
Greatest one $=\frac{2}{\sqrt{5}+\sqrt{3}}=\sqrt{5}-\sqrt{3}$
2 Greatest among the following numbers $\sqrt[3]{9}, \sqrt{3}, \sqrt[4]{16}, \sqrt[6]{80}$
Sol. LCM 3, 2, 4, and 6=12 $9^{12 / 3}, 3^{12 / 2}, 16^{12 / 4}$, and $80^{12 / 6}$
$9^{4}, 3^{6}, 16^{3}, 80^{2}$
6561, 729, 4096, 6400
i.e largest one $=\sqrt[3]{9}$.
2. By how much does $\sqrt{12}+\sqrt{18}$ exceed $\sqrt{3}+\sqrt{2}$?

Sol. Required value will be the differnce between
$\sqrt{12}+\sqrt{18}$ and $(\sqrt{3}+\sqrt{2})$
$=(\sqrt{12}+\sqrt{18})-(\sqrt{3}+\sqrt{2})$
$=(2 \sqrt{3}+3 \sqrt{2})-(\sqrt{3}+\sqrt{2})$
$=\sqrt{3}+2 \sqrt{2}$
4. Is $2^{x}=3^{y}=6^{-z}$ then $\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$ is equal to

Sol. Let $2^{x}=3^{y}=6^{-2}=k$
i.e. $2=k^{1 / x}, \quad 3=k^{1 / y}, \quad 6=k^{-1 / 2}$,
$2 \times 3=6$
$k^{1 / x} \times k^{1 / y}=k^{-1 / 2}, \quad k^{1 / x+1 / y}=k^{-1 / z}$
$\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}, \quad \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
5. Find the value of $3+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}+3}+\frac{1}{\sqrt{3}-3}$

Sol. $3+\frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}+\frac{1}{(\sqrt{3}+3)} \times \frac{3-\sqrt{3}}{3-\sqrt{3}}+\frac{1}{(\sqrt{3}-3)} \times \frac{3+\sqrt{3}}{3+\sqrt{3}}$
$=3+\frac{\sqrt{3}}{3}+\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{6}=\frac{18}{6}=3$
6. Thevalue of $\sqrt{5+2 \sqrt{6}}-\frac{1}{\sqrt{5+2 \sqrt{6}}}$

Sol. Expression $\sqrt{5+2 \sqrt{6}}-\frac{1}{\sqrt{5+2 \sqrt{6}}}$
$=\frac{(\sqrt{5+2 \sqrt{6}})^{2}-1}{\sqrt{5+2 \sqrt{6}}}=\frac{5+2 \sqrt{6}-1}{\sqrt{5+2 \sqrt{6}}}$
$=\frac{4+2 \sqrt{6}}{\sqrt{3}+\sqrt{2}} \times\left(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right)$
$=4 \sqrt{3}+6 \sqrt{2}-4 \sqrt{2}-4 \sqrt{3}=2 \sqrt{2}$
7. If $a=64$ and $b=289$, then the value of $(\sqrt{\sqrt{a}+\sqrt{b}}-\sqrt{\sqrt{b}-\sqrt{a}})^{1 / 2}$

Sol. $(\sqrt{\sqrt{64}+\sqrt{289}}-\sqrt{-\sqrt{64}+\sqrt{289}})^{1 / 2}$
$(\sqrt{8+17}-\sqrt{-8+17})^{1 / 2}=(5-3)^{1 / 2}=\sqrt{2}$

Foundation

Questions

1. If $3^{x}-3^{x-1}=18$, then x^{x} is equal to
(a) 3
(b) 8
(c) 27
(d) 216

2 If $\mathrm{a}^{2 x+2}=1$, where a is a positive real number other than 1 , then $\mathrm{x}=$?
(a) -2
(b) -1
(c) 0
(d) 1
3. $\frac{\left[(12)^{-2}\right]^{2}}{\left[(12)^{2}\right]^{-2}}=$?
(a) 12
(b) 4.8
(c) $\frac{12}{144}$
(d) 1
4. Valueof ? in expression
$7^{8.9} \div(343)^{17} \times(49)^{4.8}=7$ is
(a) 13.4
(b) 12.8
(c) 11.4
(d) 9.6
5. If $\left\{\left(2^{2}\right)^{1 / 2}\right\}=256$, find the valueof '?'.
(a) 1
(b) 2
(c) 4
(d) 8
6. $(16)^{9} \div(16)^{4} \times 16^{3}=(16)^{?}$
(a) 6.75
(b) 8
(c) 10
(d) 12
7. $(42 \times 229) \div(9261)^{1 / 3}=$?
(a) 448
(b) 452
(c) 456
(d) 458
8. Evaluate $(0.00032)^{2 / 5}$.
(a) $\frac{1}{625}$
(b) $\frac{1}{225}$
(c) $\frac{1}{125}$
(d) $\frac{1}{25}$
9. If $\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=a+b \sqrt{35}$, then thevalueof $(a-b)$ is:
(a) 5
(b) 6
(c) 8
(d) Noneof these
10. If $P=124$, then $\sqrt[3]{P\left(P^{2}+3 P+3\right)+1}=$?
(a) 5
(b) 7
(c) 123
(d) 125
11. If $\left(\frac{p}{q}\right)^{n-1}=\left(\frac{q}{p}\right)^{n-3}$, then the value of n is:
(a) $\frac{1}{2}$
(b) $\frac{7}{2}$
(c) 1
(d) 2

12 Value of ? in $\sqrt[3]{512} \div \sqrt[4]{16}+\sqrt{576}=$? is:
(a) 24
(b) 31
(c) 28
(d) 18
13. Value of $3+\frac{1}{\sqrt{3}}+\frac{1}{3+\sqrt{3}}+\frac{1}{\sqrt{3}-3}-3$ is:
(a) $3+\sqrt{3}$
(b) 3
(c) 1
(d) 0
14. $16^{5 / 4}=$?
(a) 64
(b) 31
(c) 32
(d) 33
15. $\left(\frac{32}{243}\right)^{-3 / 5}=$?
(a) $\frac{27}{8}$
(b) $\frac{27}{7}$
(c) $\frac{27}{6}$
(d) $\frac{27}{2}$
16. Find thevalue of $(243)^{0.16} \times(243)^{0.04}$
(a) 0.16
(b) $\frac{1}{3}$
(c) 3
(d) 0.04
17. $17^{3.5} \times 17^{7.3} \div 17^{4.2}=17^{\text {? }}$
(a) 8.4
(b) 8
(c) 6.6
(d) 6.4
18. If $289=17^{\frac{x}{5}}$, then $\mathrm{x}=$?
(a) 16
(b) 8
(c) 10
(d) $\frac{2}{5}$
19. $\left[\left\{\left(-\frac{1}{2}\right)^{2}\right\}^{-2}\right]^{-1}=$?
(a) $\frac{1}{16}$
(b) 16
(c) $-\frac{1}{16}$
(d) -16

