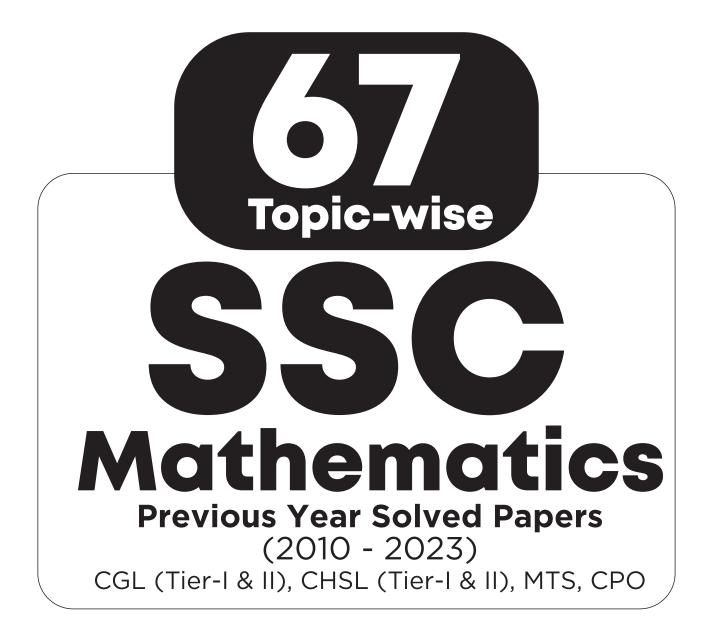
6th Edition

Mathematics **Previous Year Solved Papers**

(2010 - 2023)CGL (Tier-I & II), CHSL (Tier-I & II), MTS, CPO



Includes

- CGL Tier-I & II
- MTS
- CHSL Tier-I & II
- CPO/ SI
- Original Question & Authentic Solutions

In the interest of student community

Circulation of softcopy of Book(s) in pdf or other equivalent format(s) through any social media channels, emails, etc. or any other channels through mobiles, laptops or desktops is a criminal offence. Anybody circulating, downloading, storing, softcopy of the Book on his device(s) is in breach of the Copyright Act. Further Photocopying of this book or any of its material is also illegal. Do not download or forward in case you come across any such softcopy material.

DISHA Publication Inc.

A-23 FIEE Complex, Okhla Phase II New Delhi-110020 Tel: 49842349/ 49842350

 $\ensuremath{\mathbb{C}}$ Copyright DISHA Publication Inc.

All Rights Reserved. No part of this publication may be reproduced in any form without prior permission of the publisher. The author and the publisher do not take any legal responsibility for any errors or misrepresentations that might have crept in.

We have tried and made our best efforts to provide accurate up-to-date information in this book.

Typeset By DISHA DTP Team

Buying Books from Disha is always Rewarding

This time we are appreciating your writing Creativity.

Write a review of the product you purchased on Amazon/ Flipkart

Take a screen shot / Photo of that review

Scan this QR Code → Fill Details and submit | That's it ... Hold tight n wait. At the end of the month, you will get a surprise gift from Disha Publication

Scan this QR code

Write To Us At

feedback_disha@aiets.co.in

www.dishapublication.com

CONTENTS

1.	Number System and HCF & LCM	1-15
2.	Simplification and Square & Cube Root	16-33
3.	Algebra	34-76
4.	Average	77-88
5.	Percentage	89-103
6.	Profit & Loss	104-137
7.	Simple & Compound Interest	138-153
8.	Ratio, Proportion, Mixture and Partnership	154-172
9.	Time and Work (Pipe & Cisterns)	173-193
10.	Time, Speed & Distance (Boat and Streams)	194-212
11.	Mensuration	213-242
12.	Trigonometry	243-279
13.	Geometry	280-329
14.	Data Interpretation	330-381
15.	Statistics & Probability	382-384

EBD_7007

The H.C.F. and L.C.M. of two numebrs are 8 and 48 1. respectively. If one of the numbers is 24, then the other number is (SSC CGL 1st Sit. 2010) (a) 48 (c) 24 (b) 36 (d) 16 The greatest number, which when subtracted from 5834, 2. gives a number exactly divisible by each of 20, 28, 32 and 35, (SSC CGL 1st Sit. 2010) is (a) 1120 (b) 4714 (c) 5200 (d) 5600 The ninth term of the sequence 0, 3, 8, 15, 24, 35, is 3. (SSC CGL 1st Sit. 2010) (a) 63 (b) 70 (c) 80 (d) 99 A number, when divided by 114, leaves remainder 21. If the 4. same number is divided by 19, then the remainder will be (SSC CGL 1st Sit. 2010) (c) 7 (a) 1 (b) 2 (d) 17 Two numbers are in the ratio 3 : 4. Their L.C.M. is 84. The 5. (SSC CGL 1st Sit. 2010) greater number is (a) 21 (b) 24 (c) 28 (d) 84 The sixth term of the sequence 2, 6, 11, 17, is 6. (SSC CGL 1st Sit. 2010) (a) 24 (b) 30 (c) 32 (d) 36 A number, when divided by 136, leaves remainder 36. If the 7. same number is divided by 17, the remainder will be (SSC CGL 2nd Sit. 2010) (a) 9 (b) 7 (c) 3 (d) 2 8. A 4-digit number is formed by repeating a 2-digit number such as 1515, 3737, etc. Any number of this form is exactly (SSC CGL 2nd Sit. 2010) divisible by (a) 7 (c) 13 (d) 101 (b) 11 9. The H.C.F. and L.C.M. of two numbers are 12 and 336 respectively. If one of the numbers is 84, the other is (SSC CGL 2nd Sit. 2010) (a) 36 (b) 48 (c) 72 (d) 96 10. The sum of two numbers is 36 and their H.C.F and L.C.M. are 3 and 105 respectively. The sum of the reciprocals of two (SSC CGL 2nd Sit. 2010) numbers is (b) $\frac{3}{25}$ (c) $\frac{4}{35}$ (d) $\frac{2}{25}$ (a) $\frac{2}{35}$ 11. If 'n' be any natural number, then by which largest number $(n^3 - n)$ is always divisible? (SSC CGL 2nd Sit. 2010) (c) 12 (a) 3 (b) 6 (d) 18

CHAPTER

12. How many perfect squares lie between 120 and 300? (SSC CGL 2nd Sit. 2010) (a) 5 (d) 8 (b) 6 (c) 7 13. The remainder when 3^{21} is divided by 5 is (SSC CGL 1st Sit. 2011) (b) 2 (c) 3 (a) 1 (d) 4 14. The last digit of $(1001)^{2008} + 1002$ is (SSC CGL 1st Sit. 2011) (a) 0 (b) 4 (b) 3 (d) 6 15. If $x * y = (x + 3)^2 (y-1)$, then the value of 5 * 4 is (SSC CGL 1st Sit. 2011) (a) 192 (b) 182 (c) $\sqrt{2}$ (d) 356 16. The L.C.M. of three different numbers is 120. Which of the following cannot be their H.C.F.? (SSC CGL 1st Sit. 2011) (a) 8 12 (d) 35 (b) (c) 24 17. A number when divided by 49 leaves 32 as remainder. This number when divided by 7 will have the remainder as (SSC CGL 1st Sit. 2011) (c) 2 (a) 4 (b) 3 (d) 5 18. The traffic lights at three different road crossings change after 24 seconds, 36 seconds and 54 seconds respectively. If they all change simultaneously at 10:15:00 AM, then at what time will they again change simultaneously? (SSC CGL 1st Sit. 2011) (a) 10:16:54 AM (b) 10:18:36AM (c) 10:17:02AM (d) 10:22:12AM 19. The least number, which is to be added to the greatest number of 4 digits so that the sum may be divisible by 345, is (SSC CGL 2nd Sit. 2011) (a) 50 (b) 6 (c) 60 (d) 5 **20.** If 17^{200} is divided by 18, the remainder is (SSC CGL 2nd Sit. 2011) (a) 1 (b) 2 (c) 16 (d) 17 **21.** The unit digit in the sum of $(124)^{372} + (124)^{373}$ is (SSC CGL 2nd Sit. 2011) (a) 5 (b) 4 (c) 2 (d) 0 22. If $a * b = a^b$, then the value of 5 * 3 is (SSC CGL 2nd Sit. 2011) (a) 125 (b) 243 (c) 53 (d) 15

_										
23.	Wh + 5		of the fo	ollowing				de $5^{71} + 5^{72}$ Sit. 2011)	35.	The lea
	(a)	150	(b)	160	(c)	155	(d)	30		
24.	L.C	.M. of tw	o numb	pers is 12	0 and	their H.	.C.F. is 1	0. Which of		(a) 37
		followin							36.	What v
			U					^{ad} Sit. 2011)		1 + 3 + 3
	(a)	140			(b))		
	(u) (c)	60			(d)					(a) 25
25			1::-:1	1 - 1 5	()			1 71	37.	The lea
25.				•			er 18 2.	What is the	57.	leave th
	rem	ainder w	vnen <i>n</i> -	15 alvia	ed by		COLA			leave th
					<i>(</i>)			^{id} Sit. 2011)		(a) 28
	(a)		(b)	3	(c)		(d)	4		
26.					-		•	om a point	20	(c) 28 If $1^3 + 2$
				•				econds, 360	38.	
					-	-		. After how		$(0.11)^3$
	mu	ch time t	hey me	et at the	starti			first time?		(a) 0.2
								^{ad} Sit. 2011)	20	(c) 2.6
	(a)	1800 se	econds		· · ·		seconds		39.	With a f
	(c)	2400 se					seconds			prime n
27.		-					0, 176, 2	264 leaving		are pos
	rem	ainders	of 4, 6,	and 9 re	specti	ively is				(a) 2
						(S	SC Sub	. Ins. 2012)		
	(a)	85	(b)	34	(c)	17	(d)	2	40.	If $x = -$
28.	The	ere are 4 t	terms in	n an A.P	. such	that the	e sum of	two means		١
	is 1	10 and p	roduct o	of their e	extrem	nes is 21	125. The	^{3rd} term is		is:
						(SS	SC Sub.	Ins. 2012)		(a) 95
	(a)	65	(b)	75	(c)	55	(d)	45	41.	The rat
29.	The	number	neares	t to 7507	70 wh	ich is d	ivisible	by 65, is		LCM is
								st Sit. 2012)		(a) 10
	(a)	75070			(b)	75075				
	(c)	75010				75065			42.	L.C.M.
30.			umber u	which w	· · /		w 35 14	5, 55 leaves		
50.		remainde					Jy 55, 4.	, 55 icaves		20
	the	i cinamu	ci 10, 2	0, 50105	speen		CCL 1	st Sit. 2012)		(a) $\frac{2}{2}$
	(a)	2440		2402						
21	(a)		(b)	3482		2468	(d)		43.	
31.		-						three-digit		value o
			0			-		7 which is		(a) 30
	divi	sible by	11. Ine	en the va	alue o				44.	If the su
		11	4.5	10				st Sit. 2012)		1000 is
	(a)	11	(b)	12	(c)		(d)	10		(a) div
32.		-					, 35 and	59 to leave		(b) div
	the	same rer	nainder	r in each	a case					(c) di
						(SSC		st Sit. 2012)		(d) di
	(a)	9	(b)	6	(c)	7	(d)	8	45.	The fif
33.	The	e next ter	m of th	e series						$t_{n+2} =$
	-1,	6, 25, 62	2, 123, 2	214,	is:	(SSC	CGL 1	st Sit. 2012)		(a) 5
	(a)	345	(b)	143	(c)	341	(d)	343	46.	Product
34.	The	e next ter	m of the	e series	1,512	2, 24, 43	3 is			
								st Sit. 2012)		(a) 13
	(a)	51	(b)	62	(c)		(d)	78		(c) 11
	、 /				(-)		()			(-) 11

						,		
35.		least mul es remain	-				divided b	oy 4, 5, 6, 7
						(SSC	CCGL 2 ^r	nd Sit. 2012
	(a)	3780	(b)	3783	(c)	2520	(d)	2522
86.	Wha	at would b	be the	sum of				
	1 + 3	3+5+7+	9+1	1+13+	15 + .	uj	o to 15th t	erm?
								nd Sit. 2012
	(a)	250	(b)	240	(c)			265
3 7.								90, 120 wil
		e the rema					-	
	10001	• • • • • • • • • • • • • • • • • • • •		,,	, 1			^{ad} Sit. 2012
	(a)	2870			(b)	2860		
		2890			~ /	2880		
38.		$3^{2}+2^{3}+$	+9	3 = 2025			pprox, va	lue of
								nd Sit. 2012
		0.2695	,	(**		0.369		
	· · ·	2.695				3.695	-	
39.			vit prin	ne numł	· · ·		dded we	get anothe
		-	-					ch number
	-	possible?						Sit. 2012)
	(a)	•	(b)	3	(c)	·	(d)	,
	. ,		. ,					
40.	10	$\sqrt{3} - \sqrt{2}$	2	$\sqrt{3}$	$+\sqrt{2}$.1 1	e of $x^3 + y^2$
10.	II x	$= \frac{1}{\sqrt{3} + \sqrt{2}}$	= anc 2	$y = \sqrt{3}$	$-\sqrt{2}$, ther	n the valu	e of $x^3 + y^3$
	is:			•		(5	SC Sub	Ins. 2013)
		950	(b)	730	(a)		(d)	,
41.								is 5. Their
•1.	LCN		wo nu		55.4			Ins. 2013)
			(h)	60				,
	(a)	10	(b)	00	(c)	15	(d)	12
12	тc	.M. of $\frac{2}{3}$,	45.	_			(660.0	1101 0010
12.	L.C	$\frac{100}{3}$	$\frac{1}{9}, \frac{1}{6}$	S			(350 0	HSL 2013
	(a)	$\frac{20}{27}$	(b)	$\frac{8}{27}$	(c)	20	(d)	10
	(4)	27	(0)	27	(0)	3	(4)	3
13.	'a' di	ivides 228	leavi	ng a rem	ainde	er 18. T	The bigge	st two-digi
	valu	e of 'a' is					(SSC C	HSL 2013
	(a)	30	(b)	70	(c)	21	(d)	35
14.	Ifth	e sum of t	he dig	its of an	y inte	eger ly	ing betwe	en 100 and
		0 is subtra	-		-		-	
	(a)	divisible	by 5				(SSC C	HSL 2013
	(b)	divisible	by 6					
		divisible	-					
		divisible	-					
15.			-	e seque	nce fo	or whi	ch $t_1 = 1$	$t_{2} = 2$ and
		$t_2 = t_n + t_n$						² Sit. 2013)
	(a)		(b)		(c)		(d)	8
16.								ir L.C.M. i
			·· r.					CGL 2013)
	(a)	13			(b)	39	,	• - •)
	(a)	117			(d)			

(c) 117 (d) 9

2 23

- 47. A number x when divided by 289 leaves 18 as the remainder. The same number when divided by 17 leaves y as a remainder. The value of y is (SSC CGL 2nd Sit. 2013)
 (a) 3 (b) 1 (c) 5 (d) 2
- 48. The sum of the squares of the digits of the largest prime number in two digits is (SSC Multi-Tasking 2014)
 (a) 148 (b) 130 (c) 97 (d) 118
- **49.** Find the number lying between 900 and 1000 which when divided by 38 and 57 leaves in each case a remainder 23.
 - (SSC Multi-Tasking 2014) (a) 912 (b) 926
- (c) 935 (d) 962 **50.** The next term of the sequence,

 $\left(1+\frac{1}{2}\right), \left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right), \left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right), _$ is (SSC Sub. Ins. 2014)

(a) 3 (b) $\left(1+\frac{1}{5}\right)$

(c) 5 (d)
$$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{5}\right)$$

- 51. Three tankers contain 403 litres, 434 litres, 465 litres of diesel respectively. Then the maximum capacity of a container that can measure the diesel of the three container exact number of times is (SSC Sub. Ins. 2014)
 (a) 31 litres (b) 62 litres
 - (c) 41 litres (d) 84 litres
- 52. The H.C.F. and L.C.M. of two numbers are 44 and 264 respectively. If the first number is divided by 2, the quotient is 44. The other number is (SSC CHSL 2014)
 (a) 147 (b) 528 (c) 132 (d) 264
- 53. A teacher wants to arrange his students in an equal number of rows and columns. If there are 1369 students, the number of students in the last row are (SSC CHSL 2014)
 (a) 37 (b) 33 (c) 63 (d) 47
- 54. The first term of an Arithmetic Progression is 22 and the last term is -11. If the sum is 66, the number of terms in the sequence are : (SSC CHSL 2014)
 (a) 10
 (b) 12
 (c) 9
 (d) 8
- 55. If the product of first fifty positive consecutive integers be divisible by 7ⁿ, where n is an integer, then the largest possible value of n is (SSC CGL 1st Sit. 2014)
 (a) 7 (b) 8
 - (c) 10 (d) 5
- 56. The smallest five digit number which is divisible by 12, 18 and 21 is : (SSC CHSL 2015)
 (a) 50321 (b) 10224
 - (c) 30256 (d) 10080

57.		3 + + 10	$)^3 - 3025$	5, then	the va		+ 4 ³ + +
	20 ³ is :					(SSC C	HSL 2015)
	(a) 506			· · ·	12100		
	(c) 242			· · ·	7590		
58.	The leas	st number	that sho	uld be	added	to 2055	so that the
	sum is ex	xactly divis	sible by 2	27:	(SSC	CGL 1	st Sit. 2015)
	(a) 24	(b)	27	(c)	31	(d)	28
59.	The leas	st number	which v	when d	livided	by 6, 9,	12, 15, 18
	leaves th	e same ren	nainder	2 in ea	ch case	e is:	
					(SSC	CGL 2 ⁿ	^d Sit. 2015)
	(a) 178	(b)	182	(c)	176	(d)	180
60.	What lea			ssigne	d to '*'		he numbers
		3 is exactly					
		5		5		CGL 1	st Sit. 2016)
	(a) 7	(b)	8	(c)		(d)	9
61.		. ,					Y such that
010			-				what is the
	value of		protory	arviore	, ie ey (CGL 2017)
	(a) 2		4	(c)	6	(d)	8
62.				~ ~ ~			which are
02.		ely divisib					
	-	(b)	-	(c)		(JSC C) (d)	
	(a) 8	(0)	9	(0)	10	(u)	12
63.	Which w	value amor	ıg ∛5,∜	6. 12	2, ¹² √27	$\overline{6}$ is the	largest?
				, ,			
				, .		(SSC)	CGL 2017)
		(b)	4√6		√12		CGL 2017)
64.	(a) $\sqrt[3]{5}$			(c)		(d)	CGL 2017)
64.	(a) ∛5 By whic		mber sh	(c) nould :	5000 b	(d) e divide	C GL 2017) ¹² √276
64.	(a) ∛5 By whic	ch least nu	mber sh square?	(c) nould :	5000 b	(d) e divide	CGL 2017) $\sqrt[12]{276}$ d so that it CGL 2017)
	(a) $\sqrt[3]{5}$ By whice becomess (a) 2	ch least nu s a perfect	mber sh square? 5	(c) nould : (c)	5000 b 10	(d) e divide (SSC ((d)	CGL 2017) $\frac{12\sqrt{276}}{4}$ so that it CGL 2017) 25
	(a) $\sqrt[3]{5}$ By whice becomess (a) 2	ch least nu s a perfect (b)	mber sh square? 5	(c) nould : (c)	5000 b 10	(d) e divide (SSC ((d) le) of 57	CGL 2017) $\frac{12\sqrt{276}}{4}$ so that it CGL 2017) 25
	(a) $\sqrt[3]{5}$ By whice becomess (a) 2	th least nu s a perfect (b) the LCM (i	mber sh square? 5 least con	(c) nould : (c) nmon	5000 b 10 multip	(d) e divide (SSC ((d) le) of 57 (SSC C	CGL 2017) $\sqrt[12]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017)
65.	(a) $\sqrt[3]{5}$ By whic becomes (a) 2 What is (a) 176	ch least nu s a perfect (b) the LCM (1 7 (b)	mber sh square? 5 least con 1567	(c) nould : (c) nmon : (c)	5000 b 10 multip 1576	(d) e divide (SSC ((d) le) of 57 (SSC C (d)	CGL 2017) $\frac{12}{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919
65.	(a) $\sqrt[3]{5}$ By whice becomes (a) 2 What is (a) 176 Product of	ch least nu s a perfect (b) the LCM (7 (b) of digits of	mber sh square? 5 least con 1567 a 2–digi	(c) nould : (c) nmon (c) t numb	5000 b 10 multip 1576 per is 2'	(d) e divide (SSC ((d) le) of 57 (SSC C (d) 7. If we a	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the
65.	(a) $\sqrt[3]{5}$ By whice becomes (a) 2 What is (a) 176 Product of number,	ch least nu s a perfect (b) the LCM (1 7 (b) of digits of the new r	mber sh square? 5 least con 1567 a 2–digi umber o	(c) nould : (c) nmon (c) t numb obtain	5000 b 10 multip 1576 per is 2' ed is a	(d) e divide (SSC ((d) le) of 57 (SSC C (d) 7. If we a number	CGL 2017) $\frac{12}{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919
65.	(a) $\sqrt[3]{5}$ By whice becomes (a) 2 What is (a) 176 Product of number,	ch least nu s a perfect (b) the LCM (7 (b) of digits of	mber sh square? 5 least con 1567 a 2–digi umber o	(c) nould : (c) nmon (c) t numb obtain	5000 b 10 multip 1576 per is 2' ed is a	(d) e divide (SSC ((d) le) of 57 (SSC C (d) 7. If we a number per.	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by
65.	 (a) ³√5 By whice becomess (a) 2 (a) 176 Product of number, intercha 	ch least nu s a perfect (b) the LCM (1 7 (b) of digits of the new r nge of the	mber sh square? 5 least con 1567 a 2–digi umber o digits. F	(c) nould : (c) nmon (c) t numb obtain ind th	5000 b 10 multip 1576 ber is 2' ed is a e numb	(d) e divide (SSC ((d) le) of 57 (SSC C (d) 7. If we a number per. (SSC C	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017)
65. 66.	(a) $\sqrt[3]{5}$ By whice becomess (a) 2 What is (a) 176 Product of number, intercha (a) 39	ch least nu s a perfect (b) the LCM (f 7 (b) of digits of the new r nge of the (b)	mber sh square? 5 least con 1567 a 2–digi number o digits. F 93	(c) nould : (c) nmon (c) t numb obtain ind the (c)	5000 b 10 multip 1576 per is 2' ed is a e numb 63	(d) e divide (SSC ((d) le) of 57 (SSC C (d) 7. If we a number per. (SSC C (d)	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017) 36
65.	(a) $\sqrt[3]{5}$ By whice becomess (a) 2 What is (a) 176 Product of number, intercha (a) 39	ch least nu s a perfect (b) the LCM (1 7 (b) of digits of the new r nge of the	mber sh square? 5 least con 1567 a 2–digi number o digits. F 93	(c) nould : (c) nmon (c) t numb obtain ind the (c)	5000 b 10 multip 1576 per is 2' ed is a e numb 63	(d) e divide (SSC C (d) le) of 57 (SSC C (d) 7. If we a number per. (SSC C (d) divisible	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017) 36 by 88 is:
65. 66.	 (a) ³√5 By whice becomeses (a) 2 (a) 176 Product of number, intercha (a) 39 The lease 	ch least nu s a perfect (b) the LCM (i 7 (b) of digits of the new r nge of the (b) st number of	mber sh square? 5 least con 1567 a 2–digi umber of digits. F 93 of five di	(c) nould : (c) nmon (c) t numb obtain ind th (c) igits ex	5000 b 10 multip 1576 ber is 2' ed is a e numb 63 xactly o	(d) e divide (SSC C (d) le) of 57 (SSC C (d) 7. If we a number ber. (SSC C (d) divisible (SSC I	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017) 36 by 88 is: MTS 2017)
65. 66. 67.	(a) $\sqrt[3]{5}$ By whice becomes (a) 2 What is (a) 176 Product of number, intercha (a) 39 The leas (a) 100	ch least nu s a perfect (b) the LCM (1 7 (b) of digits of the new r nge of the (b) st number of 88 (b)	mber sh square? 5 least con 1567 a 2–digi number of digits. F 93 of five di 10023	(c) nould (c) nmon (c) t numb obtain ind the (c) igits er (c)	5000 b 10 multip 1576 per is 2' ed is a e numb 63 xactly o 10132	(d) e divide (SSC C (d) le) of 57 (SSC C (d) 7. If we a number oer. (SSC C (d) divisible (SSC I (d)	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017) 36 by 88 is: MTS 2017) 10032
65. 66.	(a) $\sqrt[3]{5}$ By whice becomess (a) 2 What is $\sqrt[3]{6}$ Product of number, intercha (a) 39 The leass (a) 100 Of the th	ch least nu s a perfect (b) the LCM (f 7 (b) of digits of the new r nge of the (b) st number of 88 (b) nree numb	mber sh square? 5 least con 1567 a 2–digi number o digits. F 93 of five di 10023 ers, the	(c) nould : (c) nmon (c) t numb obtain ind the (c) igits e: (c) first is	5000 b 10 multip 1576 per is 2' ed is a e numb 63 xactly o 10132 twice	(d) e divide (SSC C (d) le) of 57 (SSC C (d) 7. If we a number oer. (SSC C (d) divisible (SSC I (d) the seco	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017) 36 by 88 is: MTS 2017) 10032 nd, and the
65. 66. 67.	(a) $\sqrt[3]{5}$ By whice becomess (a) 2 What is $\sqrt[3]{6}$ Product of number, intercha (a) 39 The leass (a) 100 Of the th second i	ch least nu s a perfect (b) the LCM (f 7 (b) of digits of the new r nge of the (b) st number of 88 (b) nree numb s twice tho	mber sh square? 5 least con 1567 a 2–digi number of digits. F 93 of five di 10023 ers, the e third. 7	(c) nould : (c) nmon (c) t numb obtain ind th (c) igits e: (c) first is The av	5000 b 10 multip 1576 per is 2' ed is a e numb 63 xactly o 10132 twice verage	(d) e divide (SSC C (d) le) of 57 (SSC C (d) 7. If we a number ber. (SSC C (d) divisible (SSC I (d) the seco of the re	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017) 36 by 88 is: MTS 2017) 10032 nd, and the eciprocal of
65. 66. 67.	 (a) ³√5 By whice becomeses (a) 2 What is a second seco	ch least nu s a perfect (b) the LCM (1 7 (b) of digits of the new r nge of the (b) st number of 88 (b) nree numb s twice the bers is 7/12	mber sh square? 5 least con 1567 a 2–digi number of digits. F 93 of five di 10023 ers, the e third. 7	(c) nould : (c) nmon t numb obtain ind th (c) igits e: (c) first is The av umber	5000 b 10 multip 1576 per is 2' ed is a e numb 63 xactly of 10132 twice /erage s are:	(d) e divide (SSC C (d) le) of 57 (SSC C (d) 7. If we a number ber. (SSC C (d) divisible (SSC I (d) the seco of the re	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017) 36 by 88 is: MTS 2017) 10032 nd, and the
65. 66. 67.	 (a) ³√5 By whice becomeses (a) 2 What is a second seco	ch least nu s a perfect (b) the LCM (1 7 (b) of digits of the new r nge of the (b) st number of 88 (b) nree numb s twice the bers is 7/12 10, 5	mber sh square? 5 least con 1567 a 2–digi number of digits. F 93 of five di 10023 ers, the e third. 7	(c) nould (c) nmon (c) t numb obtain ind the (c) igits e: (c) first is The av umber (b)	5000 b 10 multip 1576 per is 2' ed is a e numb 63 xactly o 10132 twice verage	(d) e divide (SSC C (d) le) of 57 (SSC C (d) 7. If we a number oer. (SSC C (d) divisible (SSC I (d) the seco of the re (SSC M	CGL 2017) $1\sqrt[2]{276}$ d so that it CGL 2017) 25 and 93? HSL 2017) 1919 dd 54 to the formed by HSL 2017) 36 by 88 is: MTS 2017) 10032 nd, and the eciprocal of

- **69.** What is the smallest value that must be added to 709, so that the resultant is a perfect square? (SSC Sub. Ins. 2017)
 - (a) 8 (b) 12
 - (c) 20 (d) 32

70	Which		~ 10	[4	11		Γπ. is the
/0.		one amon t number?	g √10+	-√4, v			√7 Is the Ins. 2017)
	(a) $\sqrt{1}$			(h)	$\sqrt{11} +$		1115. 2017)
	•	•			•	• -	
	(c) $\sqrt{2}$	•				e equal	(D.10)
71.	lf 34N 1	s divisible l	by 11, th	en wh			of N? . Ins. 2017)
	(a) 1	(b)	3	(c)		(d)	· · · · · ·
72.	· /	s the sum o		~ /		()	
		ivided by 12	,	· ·			
	in each	case, and is	also cor	nplete	-	-	13? Ins. 2018)
	(a) 36	(b)	16	(c)		(d)	
73.	· /	even digit n				ivisible l	by 72, then
		ill be the val					
74	(a) 21	()	20	~ /		· · · ·	16 26 there the
74.		mbers are in these two nu					,
	(a) 364		286				312
75.	The squ	are root of w	hich of th	ne folle	-		
	(-) 50	22 22		(1.)	`		Ins. 2018)
	(a) 582 (c) 225			· · ·	1489.9 2460.1		
			1				
76.	If $x = \frac{1}{1}$	$\frac{1}{213} + \frac{1}{131}$	$\frac{1}{4} + \frac{1}{14}$	-+···	$+\frac{1}{22}$	1	
	1	2.15 15.1	T 17.1,	<i>,</i>	20	.24	
	$y = \frac{1}{36}$	$\frac{1}{0.37} + \frac{1}{37.38}$	$+\frac{1}{38.39}$	+	$+\frac{1}{71.}$	$\frac{1}{72}$ then	$\frac{x}{y}$ is
	equal to):			(SSC CH	ISL-2018)
	. 1				1		
	(a) $\frac{1}{3}$			(b)	$\frac{1}{24}$		
	1						
	(c) $\frac{1}{72}$	2		(d)	3		
77.	Which a	among the f	ollowing	g num	bers is	exactly	divisible by
	11.13 ar						ISL-2018)
	()	9237			259248		
78.	()	9270 x digit num	her 15r ¹	~ /	259259 livisibl		then $(x + y)$
101	is equal	-		y 15 c		-	GL-2018)
	(a) 8	(b)	7	(c)	6	(d)	9
79.		the value of	\hat{x} so that	the se	even di		
	15 d1V151 (a) 9	ible by 99? (b)	4	(c)	2	(SSC C (d)	GL-2018)
80.	. ,	the median				· · · ·	
		6, 50, 85, 61					,

81.	If A is the s	smallest the	-				-	
		is the val	-			-		
	(a) 9912				9870			_010)
	(c) 9996			• • •	9954			
82.	If the num	nber 1005 <i>;</i>	x4 is co	~ /			by 8, th	en the
		nteger in p		-	-		-	
	(a) 1			(b)	0			
	(c) 4			(d)				
83.		eHCF of 2	3×3^4 at	nd 2 ⁵	$\times 3^{2}$	(SSC M	ITS 201	9-20)
	(a) $2^5 \times 2^{10}$				$2^3 \times$			
	(c) $2^3 \times 2^3$			()	$2^5 \times$			
84.	-	en below		the n	umbe			-
		lifferent m			Maul	(SSC M		
	9–11	Number o 6	i studel	its i	чагк 11—		er of su 5	idents
	13-15	2			15-		2	
	17-19	5					_	
	What is th	ne mean m	arks pe	er stu	dent?			
	(a) 13.5			(b)	12.2	5		
	(c) 15.5			(d)	14.2	5		
85.	When (77	⁷⁷ + 77) is	divided	by 7				
		a \				SSC CH		9-20)
97	(a) 74 Eind the a	(b)			75	(d)		ui ai la la
86.	by 11.	reatest val	ue of <i>b</i> s	so tha	it 30 <i>a</i>	(SSC C)		
	(a) 4	(b)	6	(c)	3		GL 202) 9	.0-21)
87.	If the nine) then
07.		e value of				SSC CH		
	(a) $A = 4$					3, B = 9		,
	(c) $A=5$	5, B=3		(d)	A=	4, B=6		
88.	Which is th	ne largest nu	umber th	at wil	ll divi	de 2036 a	nd 233 l	eaving
	remainder	rs 12 and 1.	3, respe	ctivel	y?	(SSC M	TS 202	0-21)
	(a) 36	(b)	42		44	(d)		
89.		, the weig		-			-	40 kg,
	270 kg, 36	50 kg, 310	kg, 300	kg. T	he ra			
						(SSC M		· · ·
	(a) 80	(b)	70		90	(d)		
90.		ligit numb	er 785 <i>x</i> .				-	
	value of (:		0			o-Inspec		20-21)
91.	(a) -2 Two numbers	(b) bers are in	0 the rati	(c)		(d) Stheir H(then
71.		ence betwe					21 15 20	, then
						o-Inspec	tor 202	20-21)
	(a) 28	(b)	308		112	(d)		,
92.	What is th						-	
		the same r	emaind					
	by 11?	(1-)	1071			b-Inspe		
	(a) 1269	(b)	1071	(c)	1089) (d) 1080	J

93. If $14331433 \times 1422 \times 1425$ is divided by 12, then what is the remainder? (SSC Sub-Inspector 2020-21) (b) 6 (d) 8 (a) 3 (c) 9 94. The LCM of two positive integers is twice the larger number and the HCF of the two numbers is 3. The smaller number is: (SSC MTS 2021-22) (c) 9 (a) 6 (b) 10 (d) 8 95. The fourth proportional to the numbers 5, 6 and 8 is: (SSC CHSL 2021-2022) (a) 9.8 (b) 9.6 (c) 9 (d) 9.5 **96.** Which of the following is divisible by 3? (SSC CHSL 2021-2022) (a) 7345932 (b) 5439763 (c) 3642589 (d) 3262735 97. What is the sum of all two digit even numbers? (SSC CHSL 2023) (a) 2520 2470 (c) 2430 (d) 2410 (b) 98. Find the greatest number 23a68b, which is divisible by 3 but NOT divisible by 9. (SSC CGL 2021-22) (a) 238689 (b) 239685 (c) 239688 (d) 237687 99. LCM of two numbers is 56 times their HCF, with the sum of their HCF and LCM being 1710. If one of the two numbers is 240, then what is the other number? (SSC CGL 2021-22) (a) 57 (b) 171 (c) 1680 (d) 210 100. The HCF of two numbers is 12. Which one of the following can never be their LCM? (SSC CGL 2022) (a) 72 (b) 60 (c) 90 (d) 84 101. If A is a greater than B by 7, B is greater than C by 16, and A + B - C is 255, then the value of 3A + C - 4B is : (SSC Sub-Inspector 2022) (a) 5 (b) 10 (d) 4 (c) 8 102. Which of the following is a prime number? (SSC Sub-Inspector 2022) (a) 54 (b) 39 (d) 89 (c) 68 103. The least common multiple of a and b is 42. The LCM of 5a and 11b is: (SSC Sub-Inspector 2022) (a) 2310 (d) 462 (b) 4620 (c) 210 **104.** What is the least value of x so that the number 8×5215 becomes divisible by 9? (SSC Sub-Inspector 2022) (a) 3 (b) 1 (c) 5 (d) 6 105. A number, when divided by 15 and 18 every time, leaves 3 as a remainder, the least possible number is: (SSC Sub-Inspector 2022) (c) 39 93 (a) 83 (b) 103 (d) **106.** What is the LCM of 15 and 25? (SSC MTS 2022) (a) 25 (b) 105 (c) 75 (d) 125 **107.** What is the HCF of two prime numbers X and Y? (SSC MTS 2022) (b) 2 (a) 1 (c) Y (d) X

108. The HCF of two numbers is one-twentieth of their LCM. If one of the numbers is 96 and the difference of the LCM and the HCF is 456, then what is the other number? (SSC CHSL 2022, Tier-II) (b) 120 (a) 48 (c) 144 (d) 72 **109.** The HCF of two numbers is 11 and their LCM is 693. If one of the numbers is 77, find the other. (SSC CHSL 2022, Tier-II) (b) 99 (a) 66 (c) 55 (d) 44 110. What is the correct descending order of the following ratios? $\frac{17}{30}, \frac{7}{15}, \frac{27}{50}, \frac{11}{20}$ (SSC CHSL 2022, Tier-II) (a) 11/20 > 17/30 > 27/50 > 7/15(b) 17/30 > 11/20 > 27/50 > 7/15(c) 17/30 > 27/50 > 11/20 > 7/15(d) 7/15 > 11/20 > 27/50 > 17/30111. How many whole numbers lie between 11^2 and 12^2 ? (SSC CHSL 2022, Tier-II) (d) 22 (a) 23 (b) 24 (c) 21 **112.** A number is divisible by 3 only when: (SSC CHSL 2022, Tier-II) (a) the difference of the sum of the odd and the even digits is divisible by 3 (b) the sum of its digits is divisible by 3 the last digit is either 0 or an even number (c) (d) the last two digits are divisible by 3 **113.** A six-digit number 11p9q4 is divisible by 24. Then the greatest possible value for pq is: (SSC CGL 2022, Tier-II) (a) 42 (b) 32 (c) 56 (d) 68 114. Two persons take steps of 77 cm and 88 cm, respectively. If they start in step, then what is the minimum distance (in cm) they should cover so that both of them can cover the distance in complete steps? (SSC MTS 2023) (a) 968 (b) 828 (c) 616 (d) 560 115. If a right circular cone of height 24 cm has the circumference of its base 42π cm, then the volume of the cone is $(\text{use }\pi = \frac{22}{7})$ (SSC CHSL 2023, Shift-I) (a) 15211 cm^3 (b) 11088 cm^3 (d) 21011 cm³ (c) 12034 cm^3 **116.** Which of the following numbers is NOT divisible by 11?

(SSC CHSL 2023, Shift-I)

(a)	1735624	(b)	752563
(c)	1661308	(d)	1904529

6		Number System and HCF & LCM
117. Find the LCM of	15, 24, 35 and 54. (SSC Sub-Inspector 2023)	122. Two numbers are in the ratio 3 : 4. The product of their HCF and LCM is 2700. The sum of the numbers is :
(a) 5670(c) 7650	(b) 7560 (d) 6570	(SSC Sub-Inspector 2023) (a) 60 (b) 105 (c) 15 (d) 45
	ber of four digits that is exactly divisible (SSC Sub-Inspector 2023) (b) 9180 (d) 8568	123. Which number among 34936, 35508, 35580 and 36508 is divisible by 33? (a) 35580 (b) 35508
119. The HCF and t respectively. If t	the LCM of two numbers are 5 and 175, the ratio of the two numbers is 5 : 7, the numbers is	(SSC CGL 2023,Tier-II)
(a) 35 (c) 45 120. The product of t	(SSC Sub-Inspector 2023) (b) 25 (d) 75 two numbers is 726 and their HCF is 11,	125. Rewa has some hens and some goates. If the total number of animal heads is 100 and the total number of animal feet is
then their LCM i (a) 58 ((SSC CGL 2023,Tier-II) (a) 76 (b) 74
cone 45 cm hig melted and recor whose radius of	ht are 28 cm and 7 cm. If this frustum is instructed into a solid right circular cylinder base and height are in the ratio 3 : 5, find face area (in cm^2) of this cylinder.	126. The number 2918245 is divisible by which of the following numbers?(SSC CGL 2023, Tier-II)(a) 3(b) 11
[Use $\pi = \frac{22}{7}$.]	(SSC Sub-Inspector 2023)	127. Find the value of given expression. (SSC CGL 2023,Tier-II)
(a) <u>4590</u>	(h) 4610	$[76 - \{90 \div 5 \times (24 - 36 \div 3) \div 3\}]$

(a)	4580	(b)	4610
(c)	4640	(d)	4620

[76	$-\{90 \div 5 \times (24 - 36 \div 3)$	÷3}]	
(a)	71.5	(b)	75.5
(c)	4	(d)	77.5

HINTS & EXPLANATIONS

1. (d) $p \times q = HCF \times LCM$

$$\therefore$$
 Second number $=\frac{8 \times 48}{24} = 16$

- 2. 2 20, 28, 32, **(b)** - 35 16, 35 10, 14, 35 8. 5 7 7, 7 1, 8, 8. 1 1, 1, \therefore LCM = 2 × 2 × 5 × 7 × 8 = 1120 : Required number = 5834 - 1120 = 4714**3.** (c) 0+3=33 + 5 = 88 + 7 = 1515 + 9 = 24
 - 24 + 11 = 3535 + 13 = 4848 + 15 = 63
 - 63 + 17 = 80

 4. (b) If the first divisor is a multiple of second divisor. Then, remainder by the second divisor.
 ∴ Remainder = 21 ÷ 19 = 2

5. (c) Let the numbers be 3x and 4x. \therefore Their LCM = 12x $\therefore 12x = 84$

$$\Rightarrow x = \frac{84}{12} = 7$$

 $\therefore \text{ Larger number } = 4x = 4 \times 7 = 28$ (c) 2+4=6

6+5=11

6.

- 11 + 6 = 17
- 17 + 7 = 24
- 24 + 8 = 32
- 7. (d) If the first divisor be a multiple of the second divisor, then required remainder = remainder obtained by dividing the first remainder (36) by the second divisor (17) = 2
 ∴ 17 is a factor of 136
 ∴ Remainder when 36 is divided by 17 = 2

8. (d) $xyxy = xy \times 100 + xy$ $= xy(100 + 1) = 101 \times xy$ Hence, the number is exactly divisible by 101.

9. (b) First number × second number

= HCF \times LCM

- \Rightarrow 84 × second number = 12 × 336
- ∴ Second number

$$=\frac{12\times336}{84}=48$$

 $p \times q = HCF \times LCM$

$$q = \frac{12 \times 336}{84} = 48$$

10. (c) Let the numbers be 3x and 3y. $\therefore 3x + 3y = 36$ $\Rightarrow x + y = 12$...(i) and 3xy = 105 ...(ii) Dividing equation (i) by (ii), we have

$$\frac{x}{3xy} + \frac{y}{3xy} = \frac{12}{105} \implies \frac{1}{3y} + \frac{1}{3x} = \frac{4}{35}$$
Shortcut Method:
$$\frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy}$$

11. (b)
$$n^3 - n = (n^2 - 1) \Rightarrow n (n+1) (n-1)$$

For $n = 2, n^3 - n = 6$
 $2^3 - 2 = 6$
i.e. $n^3 - n$ is always divisible by 6.

12. (c)
$$11^2 = 121, 12^2 = 144, 13^2 = 169, 14^2 = 196$$

 $15^2 = 225, 16^2 = 256, 17^2 = 289$
Square no above $120 = 121$ of 11
Square no below $300 = 289$ of 17
Total 11, 12, 13, 14, 15, 16, 17, i.e. 7 no.

Alternate Method:

First square number above 120 is 121

 $11^2 > 120$ and $18^2 > 300$

Hence, required number of squares between 120 to 300

$$= 18 - 11 = 7$$

13. (c) $3^1 = 3; 3^2 = 9; 3^3 = 27; 3^5 = 81; 3^5 = 243$ i.e. unit's digit is repeated after index 4. Remainder after dividing 21 by 4 = 1 \therefore Unit's digit in the expansion of $(3)^{21} = 3$ \therefore Remainder after dividing by 5 = 3

(b) Last digit of
$$(1001)^{2008} + 1002 = 1 + 2 = 3$$

14.

16. (d) HCF must be a factor of LCM from option 35 is not factor of 120.OR

Alternate Method:

If two number are in the form of ax and bx then x is H.C.F and $a \times b \times x$ is their L.C.M Hence L.C.M is always divisible by H.C.F.

- Required time = LCM of 200, 300, 360 and 450 seconds 26. (a) = 1800 seconds.
- 27. (c) Required number = H.C.F of (140-4), (176-6) and (264)-9) = H.C.F. of 136, 170 and 255.

136)2 5 5 (1	136)170(1
136	136
1 1 9) 1 3 6(1	3 4) 1 3 6(4
119	136
17)119(7	×
119	
×	

 \therefore Required number = 17

Alternate Method:

.:. Required number =75070+(65-60)=75075

Here divisible terms are $140 - 4 = 136$, $176 - 6 = 170$
and $264 - 9 = 255$
Now, difference between these numbers
170 - 136 = 34
225-170=85
H.C.F of difference $= 17$
Hence required number $= 17$.

28.	(a)	Let the 4 terms in A.P are $a - 3d$, $a - d$, $a + d$, $a + 3$ According to question	3d
			(1)
			(1)
		(a-3d)(a+3d) = 2125	(2)
		From equation (1)	
		a - d + a + d = 110	
		$2a = 110 \Longrightarrow a = 55$	
		From equation (2)	
		(a-3d)(a+3d)=2125	
		$\Rightarrow a^2 - 9d^2 = 2125$	
		$\Rightarrow (55)^2 - 9d^2 = 2125$	
		$\Rightarrow 3025 - 9d^2 = 2125$	
		$\Rightarrow 900 = 9d^2 \Rightarrow d^2 = 100 \Rightarrow d = 10$	
		$\therefore a = 55, d = +10$	
		series would be :	
		25, 45, 65, 85	
		IIIrd term would be 65.	
29.	(b)	65)75070(1154	

		690
		3099
		2760
		339
20.	(a)	∴ Required number = $345 - 339 = 6$ Remainder when $(x - 1)^n$ is divided by x is $(-1)^n$ ∴ $(17)^{200} = (18 - 1)^{200}$ ∴ Remainder = $(-1)^{200} = 1$
		Alternate Method:
		$a^n - b^n$ is completely divisible by $a + b$. If n is an even number in the case of $17^{200} \div 18$
		$17^{200} - 1^{200}$ is completely divisible by $17 + 1 = 18$
		Here, 1 is remainder. Or in other words if a^n is divided by $a + 1$ and n is even number then it always left 1 as remainder.
21.	(d)	$4^1 = 4; 4^2 = 16; 4^3 = 64; 4^4 = 256; 4^5 = 1024$
		Remainder on dividing 372 by $4 = 0$
		Remainder on dividing 373 by $4 = 1$
		.: Required unit digit
~~		= Unit's digit of the sum = $6 + 4 = 0$
22.	(a)	$a * b = a^{b}$ $\therefore 5 * 3 = 5^{3} = 5 \times 5 \times 5 = 125$
23.	(c)	$5^{71} + 5^{72} + 5^{73} = 5^{71} (1 + 5 + 5^2) = 5^{70} \times 5 \times 31$
20.	(0)	$= 5^{71} \times 155$ which is exactly divisible by 155.
24.	(d)	Let the numbers be 10x and 10y where x and y are prime to each other.
		\therefore LCM = 10 xy
		$\Rightarrow 10xy = 120$ $\Rightarrow xy = 12$
		Posssible pairs = $(3, 4)$ or $(1, 12)$
		\therefore Sum of the numbers = $30 + 40 = 70$
		Alternate Method:
		If two different numbers are in form of ax and bx H.C.F of these numbers is x and L.C.M of these numbers is aby
		numbers is abx Now a and b are co-prime terms in L.C.M.
		$10 \times a \times b = 120$
		$a \times b = 12 \rightarrow 1 \times 12$
		2×6 this is not a pair of co prime terms. 3×4
25	(A)	Paguired remainder - Pemainder obtained by dividing

17. (a) Here, the first divisor i.e. 49 is multiple of second divisor i.e. 7.

= 216 seconds = 3 minutes 36 seconds \therefore Required time = 10 : 15 : 00 +

3 minutes 36 seconds = 10: 18: 36 a.m.

: Required remainder = Remainder obtained on dividing

25. (d) Required remainder = Remainder obtained by dividing 2^2 by 5.

Remainder = 4

32 by 7 = 4

18. (b) LCM of 24, 36 and 54 seconds

19. (b) The largest 4-digit number = 9999

345)9999(28

 \sim **30.** (a) 35 - 18 = 1745 - 28 = 1755 - 38 = 17i.e., difference between the divisor and correseponding remainder is same. LCM of 35, 45 and 55 = 3465 .: Required number = 3465 - 17 = 344831. (d) 4 a 3 9 8 4 13 b 7 \therefore 13b7 is exactly divisible by 11. $\therefore b = 9 \therefore a = 1$ $\therefore a+b=9+1=10$ **32.** (d) Required number = HCF of

- (35-19), (59-35) and (59-19) = HCF 16, 24 and 40 = 8**33.** (c) The pattern is :
 - $1^{3} 2 = -1$ $2^{3} - 2 = 6$ $3^{3} - 2 = 25$ $4^{3} - 2 = 62$ $5^{3} - 2 = 123$ $6^{3} - 2 = 214$
 - $7^3 2 = 341$
- 34. (c) The pattern is : 1+4=5 5+7 (=4+3) = 12 12+12 (=7+5) = 24 24+19 (=12+7) = 43 $43+28 (=19+9) = \boxed{71}$
- 35. (b) LCM of 4, 5, 6 and 7 = 420
 ∴ Required number
 = 420k + 3 which is exactly divisible by 13.
 = 32 × 13k + 4k + 3
 Hence, 4k + 3 should be divisible by 13 for some value of k.
 For k = 9, 4k + 3 = 39 which is divisible by 13.
 ∴ Required number = 420 × 9 + 3 = 3783
- 36. (c) The sum forms A.P. First term (a) = 1Common difference (d) = 2

Sum of 15 term =
$$\frac{n}{2}(2a+(n-1)d)$$

Sum =
$$\frac{15}{2}(2 \times 1 + (15 - 1)2)$$

= $\frac{15}{2} \times 30 = 225$

- **37.** (a) Here, (48-38)=10, (64-54)=10, (90-80)=10 and (120 110)=10. ∴ Required number = (L.C.M of 48, 64, 90 and 120)-10
 - =2870

38. (c)
$$(0.11)^3 (1^3 + 2^3 + \dots + 9^3)$$

= 0.001331 × 2025

$$=\frac{1331}{40000}\approx 2.695$$

39. (a) Let the number be 10x + y. According to condition 10x + y + 18 = 10y + xy - x = 2

So those numbers are 02, 13, 24, 35, 46, 57, 68, 79, 80 But 13 and 79 are prime numbers.

40. (d)
$$x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{(\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}$$

 $= \frac{(\sqrt{3} - \sqrt{2})^2}{3 - 2} = 3 + 2 - 2\sqrt{3}. \quad \sqrt{2} = 5 - 2\sqrt{6}$
 $\therefore y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} = 5 + 2\sqrt{6}$
 $\therefore x + y = 5 - 2\sqrt{6} + 5 + 2\sqrt{6} = 10$
 $xy = (5 - 2\sqrt{6}) \cdot (5 + 2\sqrt{6})$
 $= 25 - 24 = 1$
 $\therefore x^3 + y^3 = (x + y)^3 - 3xy (x + y)$
 $= (10)^3 - 3(10) = 1000 - 30 = 970$
41. (b) If the numbers be 3x and 4x, then
HCF = $x = 5$

1. (b) If the numbers be 3x and 4x, then HCF=x=5 ∴ Number = 15 and 20 ∴ LCM=12x=12 × 5=60

Alternate Method:

If two numbers are in the form of 3x and 4x then their L.C.M = $3 \times 4 \times x$ = $3 \times 4 \times 5 = 60$

42. (c) LCM of
$$\frac{2}{3}, \frac{4}{9}, \frac{5}{6}$$

 $\frac{LCM \ of(2,4,5)}{HCF \ of \ (3,9,6)} = \frac{20}{3}$

- **43.** (b) 228 18 = 210 is exactly divisible biggest two digit no. i.e. 70
- 44. (d) (100x+10y+z)-(x+y+z)=99x+9y= 9 (11x+y)
- 45. (d) $t_{n+2} = t_n + t_{n+1}$ $t_2 = t_2 + t_2 = 3$ $t_4 = t_3 + t_2 = 3 + 2 = 5$ $t_5 = t_4 + t_3 = 3 + 5 = 8$
- 46. (c) HCF of two-prime numbers = 1 \therefore Product of numbers = their LCM = 117
- 47. (b) Here, the first divisor (289) is a multiple of second divisor (17).
 - \therefore Required remainder = Remainder obtained on dividing 18 by 17 = 1

48. (b) Largest two digit prime number is 97
$$9^2 + 7^2 = 81 + 49 = 130$$

49. (c) L.C.M of (38, 57) = 114Multiple of 114 between 900 and 1000 = 912 number which leaves 23 = 912 + 23 = 93550. (a) Next term will be

$$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{5}\right)$$

$$=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\frac{6}{5}=3$$

51. (a) H.C.F. of 403, 434 and 465 is 31.

52. (c) First number =
$$2 \times 44 = 88$$

Other number = $\frac{44 \times 264}{88} = 132$

- 53. (a) If they are equal number of rows and columns then, $\sqrt{1369} = 37$
- 54. (b) The sum of Arithmetic Progression is given by

$$s = \frac{n}{2}(a+l)$$

66 = $\frac{n}{2}(22-11) = \frac{n}{2} \times 11$

$$n = 12$$

55. (b) Product of first fifty positive consecutive integers = 1×10^{-10} $2 \times \times 50 = 50!$ Largest possible value of n

$$=\left[\frac{50}{7}\right]+\left[\frac{50}{7^2}\right]=7+1=8$$

56. (d) Lowest 5 digit number = 10,000The number which is divisible by 12, 18 and 21 is LCM of 12, 18, 12 which is 252.

$$\frac{10000}{252}$$
 gives 172 as remainder

So, 252 - 172 = 8010,000 + 80 = 10080If 10080 when divided by 12, 18 and 21 gives 0 as remainder

So, 10080 is the least 5-digit number. 57. (c) $2^3 + 4^3 + 6^3 + \dots + 20^3$

$$= 2^{3} (1^{3} + 2^{3} + 3^{3} + \dots + 10^{3})$$

$$= 2^{3} \times \left(\frac{(n)(n+1)}{2}\right)^{2} 8 \times \left(\frac{10 \times 11}{2}\right)^{2} = 8 \times 3025$$

= 24200

58. (a) Number has to be less than 27. Let the number be x. On Dividing 2055 by 27, we get remainder as 3 Now, 3 + x = 27 $\therefore x = 24$

2 | 6,9,12,15,18 3 3,9,6,15,9 3 1,3,2,5,3 1,1,2,5,1

 $LCM = 2 \times 3 \times 3 \times 2 \times 5 = 180$ Least number = 180 + 2 = 182

- To divide 451 * 603 by 9 60. (b) (4+5+1+*+6+0+3) = (19+*)(19 + *) must be multiple of 9 $\therefore 19 + * = 27$ *=8
- **61.** (a) 347XY as 347X0. Since 8 is a factor of 80. 347X0 is divisible by 8. It means last three digits 7X0 is divisible by 8. Hence, X is 2 or 6 if X = 6, number is 34760. But this is not divisible by 80. if X = 2, number is 34720, which is divisible by 80. Therefore, number is 34720 with X = 2 and Y = 0. $\therefore x + y = 2 + 0 = 2.$ 62. (c) LCM of 5 and 7 = 35
 - So, the numbers divisible by both 5 and 7 are multilpe of 35. Between 300 and 650. We have 10 multiple of 35. They are : 315, 350, 385, 420, 455, 490, 525, 560, 595, 630.

63. (a)
$$\sqrt[3]{5} = 5^{\frac{1}{3} \times 12} = 5^4 = 625$$

 $\sqrt[4]{6} = 6^{\frac{1}{4} \times 12} = 6^3 = 216$
 $\sqrt[6]{12} = 12^{\frac{1}{6} \times 12} = 12^2 = 144$
 $\sqrt[12]{276} = 276^{\frac{1}{12} \times 12} = 276^1 = 276$
So, option (a) is correct.
64. (a) According to option,
 $5000 \div 2 = 2500$
Hence, 2500 is a perfect square of 50.
65. (a) LCM of 57 and 93,
 $3 \mid 57, 93$

6

$$\begin{array}{c|cccc} 3 & 57, & 93 \\ \hline 19, & 31 \\ \Rightarrow & 3 \times 19 \times 31 = 1767. \end{array}$$

So, Required answer is 1767.

$$\therefore$$
 The number = 10x + y
When digit are interest

When digit are interchanged, the new number = 10y + x

According to question,

Product of digits = 27 i.e., xy = 27...(i) Also, 10x+y+54 = 10y+x

9x - 9y = -54x - y = -6 $\therefore x = y - 6$ From (i) and (ii), y(y-6) = 27 $y^2 - 6y - 27 = 0$ $y^2 - 9y + 3y - 27 = 0$ (y-9)(y+3)=0 \therefore y=9 or y=-3 ∴ x=3 When x = 3, and y = 9 \therefore Required number = 10x + y $=10 \times 3 + 9$ \Rightarrow 30+9=39. 67. (d) The smallest number of 5 digits = 10000Now, $\frac{10000}{99} = 113$, and remainder is 56 \therefore Required number = 10000 + (88 - 56) = (10000 + 32) =10032.**68.** (b) Let third number = xthen. second number = 2xfirst number = 4 xAccording to question (1, 1, 1)

...(ii)

$$\frac{\left(\frac{x}{x} + \frac{y}{2x} + \frac{y}{4x}\right)}{3} = \frac{7}{12}$$

$$\therefore \quad x = 9$$

$$\therefore \quad \text{first number} = 4x = 4 \times 1 = 4$$

second number = $2x = 2 \times 1 = 2$
third number = $x = 1$

69. (c) According to question

 $26 < \sqrt{709} < 27$ Now, $(27)^2 = 729$ *.*.. 729 - 709 = 20

 \therefore 20 must be added to 709 to make it a perfect square.

70. (b) Here,

 $\sqrt{10} + \sqrt{4} = 3.16 + 2 = 5.16$ $\sqrt{11} + \sqrt{3} = 3.31 + 1.73 = 5.04$ $\sqrt{7} + \sqrt{7} = 2.64 + 2.64 = 5.28$ So, $\sqrt{11} + \sqrt{3}$ is the smallest number.

A number is divisible by 11, if difference of the sum of 71. (a) the digits at the even places and sum of digits at odd places is either 0 (zero) or a multiple of 11. Now, (3+N)-4=0

3 + N - 4 = 0N - 1 = 0 \therefore N = 1 **72.** (b) L.C.M. of 12, 16 and 54. $12 = 2 \times 2 \times 3$. $16 = 2 \times 2 \times 2 \times 2$. $54 = 2 \times 3 \times 3 \times 3$ $L.C.M. = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 432$ Remainder = 7. So, required number = 432 + 7 = 439. But this is not divisible by 13. so, next number is $432 \times 2 + 7 = 871$. Number 871 is divisible by 13. Hence, required number is 871. Sum of its digits = 8 + 7 + 1 = 16. 73. (c) Any number that is divisible by 72 must be divisible by 3, 4, 8, and 9. Now, a number is divisible by 4 when a number formed by its last two digits of that number is divisible by 4. 'v6' is divisible by 4, for y = 1, 3, 5, 7, 9Again a, number is divisible by 8, when a number formed by its last 3 digits is divisible by 8. '9y6' is divisible by '8' for y = 3, 7Now, for divisibility by 9, sum of its digits should be divisible by 9. for y=3, '7+4+x+2+9+3+6'=31+xso, for x = 5, 36 is divisible by 9. Now, is '7452936' which is divisible by '24' also, so, it is divisible '72'. Now, $(2x + 3y) = 2 \times 5 + 3 \times 3 = 19$. 74. (b) Let the two numbers are 4x and 7x. H. C. F. of 4x and 7x = x. Now, x = 26. So, two numbers are 4×26 and 7×26 . Sum of two numbers = $4 \times 26 + 7 \times 26 = 11 \times 26 = 286$. **75.** (b) $x^2 = 1489.96 = \frac{148996}{100}$

$$\therefore x = \sqrt{\frac{148996}{100}} = \sqrt{\left(\frac{386}{10}\right)^2} = \frac{386}{10} = 38.6$$

76. (d)
$$x = \frac{1}{12.13} + \frac{1}{13.14} + \frac{1}{14.15} + \dots + \frac{1}{23.24}$$
$$= \frac{13-12}{12.13} + \frac{14-13}{13.14} + \frac{15-14}{14.15} + \dots + \frac{24-23}{23.24}$$
$$= \frac{1}{12} - \frac{1}{13} + \frac{1}{13} - \frac{1}{14} + \frac{1}{14} - \frac{1}{15} + \dots + \frac{1}{23} - \frac{1}{24}$$
$$x = \frac{1}{12} - \frac{1}{24} = \frac{2-1}{24} = \frac{1}{24}$$
$$y = \frac{1}{36.37} + \frac{1}{37.38} + \frac{1}{38.39} + \dots + \frac{1}{71.72}$$

 $=\frac{37-36}{36.37} + \frac{38-37}{37.38} + \frac{39-38}{38.39} + \dots + \frac{72-71}{71.72}$ $=\frac{1}{36} - \frac{1}{37} + \frac{1}{37} - \frac{1}{38} + \frac{1}{38} - \frac{1}{39} + \dots + \frac{1}{71} - \frac{1}{72}$ $y = \frac{1}{36} - \frac{1}{72} = \frac{2-1}{72} = \frac{1}{72}$ Now,

$$\frac{x}{y} = \frac{\frac{1}{24}}{\frac{1}{72}} = \frac{72}{24} = 3$$

77. (d) L. C. M. of 11, 13 and 7

$$= 11 \times 13 \times 7 = 1001$$

Now, from given option '259259' is divisible by '1001'. Hence, '259259' is divisible by 11, 13 and 7.

78. (b) Any number which divisible by 44, must be divisible by 11 also isAnd for any number divisible by 11 the difference of sum of its digits at odd and even places be divisible by 11.

For the given number 15x 1y2(x+y+1)-(5+1+2)=0 x+y=7

79. (b) 8439×53 is divisible by 99 i.e. given number is divisible by 11

(3+x+3+8) - (5+9+4) = 0, x = 4

- **80. (b)** To find the mediam
 - (1) Arrange the numbers in increasing order.
 - (2) Here we have even no. of term. So, we have to add the two middle terms and divide by 2.Data arrange in increasing order

Hence the median is
$$\frac{55+61}{2} = \frac{116}{2} = 58$$

- 81. (b) L.C.M. of 6 and 7 = 42 Smallest 3 digits number divisible by 6 and 7 is the same that is divisible by 42 and that number is $A = 42 \times 3 = 126$ Largest 4 digits number that is divisible by 6 and 7 is the some that is divisible by 42 and that number is $B = 238 \times 42 = 9996$ Now, B - A = 9996 - 126 = 9870
- 82. (b) The rule of $8 \Rightarrow$ If the last three digit of a whole number are divisible by 8 then the entire number is divisible by 8 Put x = 0 and we see that 504 is divided by 8. So, 0 is smallest integer.

83. (c) H.C.F =
$$2^3 \times 3^2$$

84. (a) Men Marks

=

$$\frac{10 \times 6 + 12 \times 5 + 14 \times 2 + 16 \times 2 + 18 \times 5}{20} = \frac{270}{20} = 13.5$$

85. (d) We know that $(x^n + 1)$ is divisible by (x + 1), for all odd values of n.

$$.77^{77} + 77 = \{(77^{77} + 1) + 76\}$$

Now, $(77^{77} + 1)$ will be divisible by (77 + 1) = 78Hence, remainder = 76.

86. (c) 30 *a* 68 *b*

When a number is divisible by 11, then the difference of sum of odd places digits and the sum of even places digits is 0 or multiple of 11.

(8+a+3)-(b+6+0)

=(11+a)-(6+b)

From the option,

If b = 3 then, a = 9

and it will divisible by 11.

87. (a) If a number is divisible by 99, then it will also divisible by 9 and 11.

8475639AB

Divisibility by 11: The difference between the sum of odd places digits and sum of even places digits from right hand side should be zero or the factor of 11.

Divisibility by 9: The sum of digits should be divisible by 9.

Sum of digits = 8 + 4 + 7 + 5 + 6 + 3 + 9 + A + B= 42 + (A + B)

 \therefore (A + B) should be 3 or 12.

Difference of odd places digits and even places digits = (B+9+6+7+8) - (A+3+5+4)

=B+30-(A+12)

=(B-A)+18

 \therefore (B – A) should be 4

From the options, option 'a' satisfy the conditions.

 $\therefore A=4, B=8$ A+B=12B-A=4

88. (c) Largest number woluld be HCF of (2036 – 12) and (233 – 13) or HCF of 2024, 220

:. HCF of 2024 and 220: $2024=2 \times 4 \times 11 \times 23$ $220=2 \times 2 \times 5 \times 11$

 \therefore HCF = 44

- So, the number would be 44.
- 89. (c) Weights of bag of tea, 350 kg, 280 kg, 340 kg, 270 kg, 360 kg, 310 kg, 300 kg
 - \therefore Range = highest weight lowest weight

$$= 360 - 270 = 90 \, \mathrm{kg}$$

90. (c) 785x 3678y divisibility of 8 = 1 ast three digits divisible by 8 $\frac{78y}{8} \Rightarrow y=4$ divisibility of 9 = sum of digits divisible by 9x = 6x - y = 6 - 4 = 291. (c) Difference = $(11-7) \times 28 = 112$ **92.** (c) 1089 is divisible by 11. $\frac{1089}{15}$ = Remainder 9 $\frac{1089}{18}$ = Remainder 9 $\frac{1089}{36}$ = Remainder 9 $14331433 \times 1422 \times 1425$ 93. (b) 12 $=\frac{1\times6\times9}{12}=\frac{54}{12}$ =Remainder 6 94. (a) HCF of two numbers is $\Rightarrow 3$ Larger number \Rightarrow 3a Smaller number \Rightarrow 3b $LCM \Rightarrow (3a) \times 2$ $3 \times a \times b \Longrightarrow 6 \times a$ $|b \Rightarrow 2|$ The smaller number is \Rightarrow 3b \Rightarrow 3 \times 2 \Rightarrow 2 \Rightarrow 6 **95.** (b) 5,6,8,*x* fourth proportional $\frac{5}{6} = \frac{8}{x}$ $x = \frac{8 \times 6}{5}$ x = 9.696. (a) for a number to be completely divisible by 3, sum of the digits of particular no. should be divisible by 3. Taking sption (a) $7 + 3 + 4 + 5 + 9 + 3 + 2 = 33 \div 3 = 0$ Option (b) $5 + 4 + 3 + 9 + 7 + 6 + 3 = 37 \div 3 \neq 0$ Option (d) $3 + 2 + 6 + 2 + 7 + 3 + 5 = 28 \div 3 \neq 0$ $\mathbf{a}_{n} = \mathbf{a} + (n-1) \, \mathbf{d}$ $98 = 10 + (n-1)^2$ $88 = (n-1) \times 2$ 44 + 1 = n*n* = 45 $\operatorname{Sn} = \frac{n}{2}(a + a_n) \Longrightarrow \frac{45}{2}(10 + 98)$ $\Rightarrow \frac{45}{2} \times 108 \Rightarrow 45 \times 54 \Rightarrow 2430$

98. (b) 239685 is the graetest number which is divisible by 3 but not by 9. 2+3+9+6+8+5=33 is divisible by 3. **99.** (d) L=56H \Rightarrow H+L=1710 \Rightarrow H+56H=1710 \Rightarrow 57H=1710 \Rightarrow H=30 $LCM = 56 \times 30 = 1680$ Let other number = x $240 \times x = 30 \times 1680$ $\Rightarrow x=210$ **100.** (c) Let the two numbers be a and b. Their H.C.F. is 12. So numbers could be 12a and 12b respectively. Both the number should be multiple of 12 Now by using options Only option 'C' is there which is not the multiple of 12*i.e.*,90. **101.** (a) A = B + 7 $B = C + 16 \rightarrow C = B - 16$ A. T. O A + B + C = 255B + 7 + B + B - 16 = 2553B = 264B = 88.Then A = 95C = 72Value of 3A + C - 4B=3(95)+72-4(88)=5**102.** (d) 89 is prime number, Prime no. is a number whose factor is either or the number itself. **103.** (a) L.C.M. of a and b = 42ab = 42L. C. M. of 5a and 11b = 55ab: L.C.M. of 5a and $11b = 55 \times 42 = 2310$: Both 5 and 11 are co-prime to each other. **104.** (d) For a number to be divisible by 9 sum of all digits of a number will be divisible by 9. so, 8x 5215 = 8 + x + 5 + 2 + 1 + 5 = 21 + xLeast value of x which makes 23 + x divisible by 9 is 6 i.e. 21 + 6 = 27. 105. (d) Least number divisible by 15 and 18 both = L.C.M.(15 and 18) = 90Least number which is divisible by 15 and 18, leaves remainder 3 i.e = 90 + 3 = 93**106.** (c) LCM of 15, 25 $15 \times 5 = 75$ $25 \times 3 = 75$ Hence, LCM is 75

14

107. (a) HCF of prime numbers is 1.
108. (b) Let LCM is a.

$$\therefore HCF = \frac{a}{20}$$
According to question,
 $a - \frac{a}{20} = 456$
 $\Rightarrow \frac{19a}{20} = 456$
 $\Rightarrow a = 24 \times 20 = 480 (LCM)$
 $\therefore HCF = \frac{480}{20} = 24$
So, 96 × other number = 480×24
 \Rightarrow other number = $\frac{480 \times 24}{96} = 120$
109. (b) One number × Other number = HCF × LCM
 $\Rightarrow 77 \times$ Other number = 11×693
 \Rightarrow Other number = $\frac{693}{7} = 99$
110. (b) LCM of 15, 20, 30, and 50 = 300
 $\therefore \frac{17}{15} \times \frac{20}{20} = \frac{140}{10} \div \frac{11}{15} = \frac{165}{300}$
 $\frac{7}{15} \times \frac{20}{20} = \frac{140}{300} \div \frac{15}{20} \times \frac{15}{15} = \frac{165}{300}$
Hence, correct descending order
 $= \frac{17}{30} > \frac{11}{20} > \frac{27}{50} > \frac{7}{15}$
111. (d) $11^2 = 121, 12^2 = 144$
Hence, whole numbers lie between 121 and 144
 $= 144 - 121 - 1 = 22$
112. (b) If the sum of number's digits is divisible by 3, then the
number is divisible by 3.
113. (c) As, 1199q4 is divisible by 8 for q = 4, 8
As, 1199q4 is divisible by 3
So, p4 q = 15 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
Now p = 7 and q = 8 for greatest possible value.
 $pq \Rightarrow 7 \times 8$
 $\Rightarrow 56$
114. (c) The minimum distance that both of them can cover is LCM of 77 and 88
 $\Rightarrow 616 \text{ cm}.$
115. (b) Circumference of base = 42 π .
 $\Rightarrow 2\pi = 42\pi$

LCM

Hence, volume of cone

$$=\frac{1}{3}\pi r^{2}h = \frac{1}{3} \times \frac{22}{7} \times 21 \times 21 \times 24$$

= 22 \times 21 \times 24

 $= 11088 \, \mathrm{cm}^3$

116. (b) The difference of the sum of digits at odd position and sum of digits at even position in a number is 0 or 11, then the number is divisble by 11.

|(7+2+6)-(5+53)| = |15-13| = 2

Hence, 752563 is not divisible by 11.

- **117. (b)** $15 = 3 \times 5$ $24 = 2 \times 2 \times 2 \times 3$ $35 = 5 \times 7$ $54 = 2 \times 3 \times 3 \times 3$ Hence, LCM of 15, 24, 35 and $54 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 7 = 7560$.
- **118.** (c) LCM of 17 and 36 = 612Largest four digits number = 9999

Remainder =
$$\frac{9999}{612}$$
 = 207
Hence, required largest four (

Hence, required largest four digits number =9999 - 207 = 9792.

119. (a) Product of two numbers = $HCF \times LCM$ $5x \times 7x = 5 \times 175$

$$\Rightarrow x^2 = \frac{5 \times 175}{35} = 25$$

$$\Rightarrow x = \sqrt{25} = 5$$

Hence, larger number is = 7 × 5 = 35

- **120.** (c) Product of two number = $HCF \times LCM$
 - \Rightarrow 726 = 11 × LCM \Rightarrow LCM = $\frac{726}{11}$ = 66
- **121.** (d) Let radius and height of cylinder are 3x and 5x. Volume of frustum = Volume of cylinder

$$\Rightarrow \frac{1}{3}\pi (R^2 + r^2 + Rr)h = \pi r_c^2 H$$

$$\Rightarrow \frac{1}{3} [(28)^2 + (7)^2 + 28 \times 7] \times 45 = (3x)^2 \times 5x$$

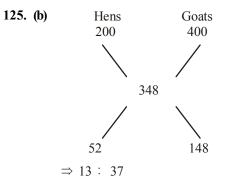
$$\Rightarrow 45x^3 = \frac{1}{3} [784 + 49 + 196] \times 45$$

$$\Rightarrow x^3 = \frac{1}{3} \times 1029 = 343$$

$$\Rightarrow x = \sqrt[3]{343} = 7$$

$$\therefore \text{ Radius} = 3 \times 7 = 21$$

Height = 5 × 7 = 35
Hence, curved surface area of cylinder = $2\pi r_c H$


$$= 2 \times \frac{22}{7} \times 21 \times 35 = 4620 \,\mathrm{cm}^2$$

122. (b) Product of numbers = $HCF \times LCM$ \Rightarrow 3x+4x=2700 $\Rightarrow 12x^2=2700$

$$\Rightarrow x^2 = \frac{2700}{12} = 225$$

$$\Rightarrow x = \sqrt{225} = 15$$

Hence, sum of the numbers = $3x + 4x = 7x$
= $7 \times 15 = 105$.
123. (b) A number is divisible by 3 if sum of digits of the number
is divisible by 3.
A number is divisible by 11 if the difference of the sum
of digits at odd position and sum of digits at even
position in a number is 0 or 11.
Only 35508 and 35580 is divisible by 3.
Now check for 11-
 $|(3+5+8)-(5+0)| = |16-5| = 11$
 $|(3+5+0)-(5+8)| = |8-13| = 5$
(Not divisible)
So, 35508 is divisible by 11.
Hence, 35508 is divisible by 33.
124. (a) $x^2 - 8x + 15$
 $= x^2 - 5x - 3x + 15$
 $= (x-5)(x-3)$
 $x^2 - 5x + 6$
 $= x^2 - 3x - 2x + 6$
 $= (x-3)(x-2)$

Hence, LCM of $x^2 - 8x + 15$ and $x^2 - 5x + 6 = (x - 5)$ (x-3) (x-2).

Hence, total number of goats = $\frac{100}{50} \times 37 = 74$

126. (b)
$$2+9+1+8+2+4+5=31$$

So, this number is not divisible by 3, 9 and 12
and, $2+1+2+5=10$, $9+8+4=21$
 $\therefore 21-10=11$
So, 2918245 is divisible by 11.

127. (c)
$$[76 - \{90 \div 5 \times (24 - 36 \div 3) \div 3\}] = \left[76 - \left\{\frac{90}{5} \times \frac{12}{3}\right\}\right]$$

= 76 - 18 × 4
= 76 - 72 = 4

2 **CHAPTER**

Simplification and Square & Cube Root

1.	$\frac{0}{0.2}$	$\frac{.125 + 0.02}{5 - 0.15 + 0.02}$	27 0.09	is equal 1	to	(SSC CC	GL 1 st	Sit. 2010)	
2.	(a)	0.3 sum of th	(b)	0.5			(d)		
	(1+0.6+0.06+0.006+0.0006+.) is (SSC CGL 1 st Sit. 2010)			
	(a)	$1\frac{2}{3}$	(b)	$1\frac{1}{3}$	(c)	$2\frac{1}{3}$	(d)	$2\frac{2}{3}$	
3.	$\sqrt{\frac{0}{0}}$	0.009×0.03 0.002×0.03	$36 \times 0.$	016×0.002	08 is	s equal to			
	1	0.002 × 0.	0000	0.0002			GL 1 st	Sit. 2010)	
	(a)	34	(b)	36	(c)	38	(d)	39	
4.	The	square ro	ot of 0	.09 is		(SSC CC	GL 1 st	39 Sit. 2010) 0.081	
	(a)	0.30	(b)	0.03	(c)	0.81	(d)	0.081	
5.	The	number 0.	.1212	2 in th	ne fo	$\operatorname{rm} \frac{p}{q}$ is e	qual to)	
						(SSC CO	GL 1 ^s	^t Sit. 2010)	
	(a)	$\frac{4}{11}$	(b)	$\frac{2}{11}$	(c)	$\frac{4}{22}$	(d)	$\frac{2}{32}$	
		11		11		<i>33</i>		<i>33</i>	
6.	By	what least	num	ber shou	ld e	675 be mu	ltiplie	⁵⁵ ed so as to Sit. 2010)	
6.	By	what least	num	ber shou e numbe	ld € r?	675 be mu (SSC CG	ltiplie L 2 nd	ed so as to Sit. 2010)	
	By v obta (a)	what least	num ct cub (b)	ber shou e numbe 5	ld 6 r ? (c)	675 be mu (SSC CG 24	ltiplie L 2 nd	ed so as to Sit. 2010)	
	By v obta (a) $\left(1\frac{1}{2}\right)$	what least in a perfect 3 $2+11\frac{1}{2}+1$	numl ct cub (b) $11\frac{1}{2}$ +	ber shou e numbe 5 $1111\frac{1}{2}$	ld 6 r? (c) is e	575 be mu (SSC CG 24 equal to (SSC CG	ltiplic L 2 nd (d) L 2 nd	ed so as to Sit. 2010) 40 Sit. 2010)	
	By v obta (a) $\left(1\frac{1}{2}\right)$	what least iin a perfe	numl ct cub (b) $11\frac{1}{2}$ +	ber shou e numbe 5 $1111\frac{1}{2}$	ld 6 r? (c) is e	575 be mu (SSC CG 24 equal to (SSC CG	ltiplic L 2 nd (d) L 2 nd	ed so as to Sit. 2010) 40 Sit. 2010)	
7.	By v obta (a) $\left(1\frac{1}{2}\right)$	what least in a perfect 3 $2+11\frac{1}{2}+1$	(b) (b) (b)	ber shou e numbe 5 $1111\frac{1}{2}$	ld 6 r ? (c) is e (c)	575 be mu (SSC CG 24 equal to (SSC CG 618	lltiplid GL 2 nd (d) L 2 nd (d)	ed so as to Sit. 2010) 40 Sit. 2010)	
7.	By v obta (a) $\left(1\frac{1}{2}\right)$ (a) $0.\overline{00}$	what least in a perfer 3 $2+11\frac{1}{2}+1$ 1236	(b) (b) $11\frac{1}{2} +$ (b) 1 to	ber shou e numbe 5 $1111\frac{1}{2}$ $1234\frac{1}{2}$	ld 6 r ? (c) is e (c)	575 be mu (SSC CG 24 equal to (SSC CG 618 (SSC CG	lltiplic L 2 nd (d) L 2 nd (d) L 2 nd	ed so as to Sit. 2010) 40 Sit. 2010) 617 Sit. 2010)	
7.	By y obta (a) $\left(1\frac{1}{2}\right)$ (a) $0.\overline{00}$ (a)	what least in a perfect 3 $2 + 11\frac{1}{2} + 1$ 1236 $\overline{01}$ is equal $\frac{1}{1000}$	(b) (b) $11\frac{1}{2}$ + (b) 1 to (b)	ber shou e numbe 5 $1111\frac{1}{2}$ $1234\frac{1}{2}$ $\frac{1}{999}$	ld 6 r? (c) is e (c) (c)	$575 \text{ be mu} \\ (SSC CG) \\ 24 \\ equal to \\ (SSC CG) \\ 618 \\ (SSC CG) \\ \frac{1}{99} \\ 99 \\ (SSC CG) \\$	lltiplia (d) L 2 nd (d) L 2 nd (d) L 2 nd (d)	ed so as to Sit. 2010) 40 Sit. 2010) 617 Sit. 2010)	
7. 8.	By v obta (a) $\left(1\frac{1}{2}\right)^{2}$ (a) $0.\overline{00}$ (a) $\frac{4}{2.1}$	what least in a perfect 3 $2 + 11\frac{1}{2} + 1$ 1236 $\overline{01}$ is equal $\frac{1}{1000}$	$\frac{111}{2} + \frac{1}{2} + $	ber shou e numbe 5 $1111\frac{1}{2}$ $1234\frac{1}{2}$ $\frac{1}{999}$ mplified	ld 6 r? (c) is e (c) (c)	$575 \text{ be mu} \\ (SSC CG) \\ 24 \\ equal to \\ (SSC CG) \\ 618 \\ (SSC CG) \\ \frac{1}{99} \\ (SSC CG) \\ (SSC$	lltiplia (d) L 2 nd (d) L 2 nd (d) L 2 nd (d) L 2 nd	ed so as to Sit. 2010) 40 Sit. 2010) 617 Sit. 2010) $\frac{1}{9}$ Sit. 2010)	
7. 8.	By v obta (a) $\left(1\frac{1}{2}\right)^{2}$ (a) $0.\overline{00}$ (a) $\frac{4}{2.1}$ (a)	what least in a perfect 3 $2+11\frac{1}{2}+1$ 1236 $\overline{01}$ is equal $\frac{1}{1000}$ $\frac{.41 \times 0.16}{\times 1.6 \times 0.2}$ 1	numl ct cub (b) $11\frac{1}{2}$ + (b) 1 to (b) $\overline{1}$ is since the set of	ber shou e numbe 5 $1111\frac{1}{2}$ $1234\frac{1}{2}$ $\frac{1}{999}$ mplified 0.1	ld 6 r? (c) is e (c) (c) to (c)	$\frac{575}{(SSC CG)^{24}}$ $\frac{1}{99}$ $\frac{575}{(SSC CG)^{24}}$ $\frac{1}{99}$ $(SSC CG)$ 0.01	lltiplia (d) L 2 nd (d) L 2 nd (d) L 2 nd (d) L 2 nd	ed so as to Sit. 2010) 40 Sit. 2010) 617 Sit. 2010) $\frac{1}{9}$ Sit. 2010)	

0)
•)
0)

13. Simplified form of
$$\left[\left(\sqrt[5]{x^{\frac{-3}{5}}} \right)^{-5/3} \right]^5$$
 is

(SSC CGL 2nd Sit. 2010)

(a)
$$x^5$$
 (b) x^{-5} (c) x (d) $\frac{1}{x}$

14.
$$(0.1 \times 0.01 \times 0.001 \times 10^7)$$
 is equal to
(SSC CGL 2nd Sit. 2010)

(a) 100 (b)
$$\frac{1}{10}$$
 (c) $\frac{1}{100}$ (d) 10

15. The least among the fractions
$$\frac{15}{16}, \frac{19}{20}, \frac{24}{25}, \frac{34}{35}$$
 is

(a)
$$\frac{34}{35}$$
 (b) $\frac{15}{16}$ (c) $\frac{19}{20}$ (d) $\frac{24}{25}$

16.
$$1.\overline{27}$$
 in the form $\frac{p}{q}$ is equal to (SSC CGL 2st Sit. 2010)

(a)
$$\frac{127}{100}$$
 (b) $\frac{73}{100}$ (c) $\frac{14}{11}$ (d) $\frac{11}{14}$

17.
$$\frac{3.25 \times 3.20 - 3.20 \times 3.05}{0.064}$$
 is equal to

(a) 1 (b)
$$\frac{1}{2}$$
 (c) $\frac{1}{10}$ (d) 10

Simplification and Square & Cube Root

- **18.** Out of six consecutive natural numbers, if the sum of first three is 27, what is the sum of the other three? (SSC CGL 2nd Sit. 2010) (b) 35 (c) 25 (d) 24 (a) 36 **19.** $\left\{ \frac{(0.1)^2 - (0.01)^2}{0.0001} + 1 \right\}$ is equal to **(SSC CGL 2nd Sit. 2010)** (a) 1010 (b) 110 (c) 101 (d) 100 **20.** $\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}} = ?$ (SSC CGL 1st Sit. 2011) (a) 2.3 (b) 3 (c) 6 (d) 6.3 21. The square root of $\left(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right)$ is (SSC CGL 1st Sit. 2011) (a) $\sqrt{3} + \sqrt{2}$ (b) $\sqrt{3} - \sqrt{2}$ (c) $\sqrt{2} + \sqrt{3}$ (d) $\sqrt{2} - \sqrt{3}$ 22. The value of $\frac{2\frac{1}{3} - 1\frac{2}{11}}{3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}}}$ is (SSC CGL 1st Sit. 2011) (a) $\frac{38}{109}$ (b) $\frac{109}{38}$ (c) 1 (d) $\frac{116}{109}$ 23. The value of $\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}} - \frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}} + \frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$ is (SSC CGL 2011) (c) $\sqrt{2}$ (b) 0 (d) $3\sqrt{6}$ (a) 4 24. $\frac{(0.05)^2 + (0.41)^2 + (0.073)^2}{(0.005)^2 + (0.041)^2 + (0.0073)^2}$ is (SSC CGL 2011) (a) 10 (b) 100 (c) 1000 (d) None of these **25.** If $9\sqrt{x} = \sqrt{12} + \sqrt{147}$, then x = ?(SSC CGL 2011) (b) 3 (c) 4 (a) 2 (d) 5 26. $\sqrt[3]{1-\frac{127}{343}}$ is equal to (SSC CGL 2nd Sit. 2011) (a) $\frac{5}{9}$ (b) $1-\frac{1}{7}$ (c) $\frac{4}{7}$ (d) $1-\frac{2}{7}$ **27.** If the sum of two numbers be multiplied by each number separately, the products so obtained are 247 and 114. The (SSC CGL 2nd Sit. 2011) sum of the numbers is (c) 21 (a) 19 (b) 20 (d) 23 28. Find a number, one-seventh of which exceeds its eleventh (SSC CGL 2nd Sit. 2011) part by 100. (a) 1925 (b) 1825 (c) 1540 (d) 1340
 - **29.** If $\frac{4\sqrt{3} + 5\sqrt{2}}{\sqrt{48} + \sqrt{18}} = a + b\sqrt{6}$, then the values of *a* and *b* are (SSC CGL 2nd Sit. 2011) respectively (a) $\frac{9}{15}, -\frac{4}{15}$ (b) $\frac{3}{11}, \frac{4}{33}$ (c) $\frac{9}{10}, \frac{2}{5}$ (d) $\frac{3}{5}, \frac{4}{15}$ **30.** If $x + \frac{2}{3 + \frac{4}{5 + \frac{7}{6}}} = 10$, then the value of x is (SSC CGL 2nd Sit. 2011) (a) $\frac{1276}{135}$ (b) $\frac{53}{6}$ (c) 4.35 (d) 9 31. The value of $3 + \frac{1}{\sqrt{3}} + \frac{1}{3 + \sqrt{3}} + \frac{1}{\sqrt{3} - 3}$ is (SSC CGL 2nd Sit. 2011) (a) $3 + \sqrt{3}$ (b) 3 (c) 1 (d) 0 **32.** A student was asked to divide a number by 6 and add 12 to the quotient. He, however, first added 12 to the number and then divided it by 6, getting 112 as the answer. The correct answer should have been (SSC CGL 2nd Sit. 2011) (a) 124 (b) 122 (c) 118 (d) 114 33. Last year my age was a perfect square number. Next year it will be a cubic number. What is my present age? (SSC Sub. Ins. 2012) (a) 25 years (b) 27 yearss (c) 26 years (d) 24 years 34. What is the value of $(2.1)^2 \times \sqrt{0.0441}$? (SSC Sub. Ins. 2012) (a) 0.9261 (b) 92.61 (c) 92.51 (d) 0.9251 **35.** The value of $\sqrt[3]{1372} \times \sqrt[3]{1458}$ is (SSC Sub. Ins. 2012) (a) 116 (b) 126 (c) 106 (d) 136 36. If $\frac{547.527}{0.0082} = x$, then the value $\frac{547527}{82}$ is : (SSC CHSL 2012) (a) 10x (b) 100x (c) $\frac{x}{100}$ (d) $\frac{x}{10}$ **37.** If $\sqrt[3]{3^n} = 27$, then the value of n is: (SSC CHSL 2012) (b) 6 (d) 3 (a) 9 (c) 1 38. From 9.00 AM to 2.00 PM, the temperature rose at a constant rate from 21°C to 36°C. What was the temperature at noon? (SSC CHSL 2012) (a) 27°C (b) 30°C (c) 32°C (d) 28.5°C

Simplification and Square & Cube Root

39.	The	value of	$\left(\sqrt{6}+\right)$	$\sqrt{6+\sqrt{6}}$		upto	$\overline{\underline{\overline{\infty}}}$ is	equal to	50.
						(SSC)	CGL 1 ^s	^t Sit. 2012)	
	(a)	3	(b)	10	(c)		(d)	· · · · ·	
40.	If 🗸	$\overline{6} \times \sqrt{15} =$	$x\sqrt{10}$	$\overline{0}$, then t	he va	ulue of x	is		
								CGL 2012)	
	(a)	3	(b)	± 3	(c)	$\sqrt{3}$	(d)	$\sqrt{6}$	51.
41.	3 –	$\frac{3+\sqrt{5}}{4} - \frac{3}{3}$	$\frac{1}{3+\sqrt{5}}$	is equa	l to		(SSC)	CGL 2012)	
	(a)	0	(b)	$\frac{3}{2}$	(c)	$\frac{\sqrt{5}}{2}$	(d)	$\sqrt{5}$	52.
42.	that	the first	son g	ets one-l	half	the hero	d, the so	our sons, so econd one-	
	four	th, the thi	rd sor	$1\frac{1}{5}$ and 1	the fo	ourth so	n 7 cow	s. Then the	
		e of n is		5				CGL 2012)	
	(a)	240	(b)	100	(c)	180	(d)	140	53.
43.	-						-	to obtain a	
	num (a)		-	8			(SSC ((d)	CGL 2012)	54.
									54.
44.	If 2	$\sqrt{\mathbf{x}} = \frac{\sqrt{5}}{\sqrt{5}}$	$\frac{+\sqrt{3}}{-\sqrt{3}}$	$-\frac{\sqrt{5}-\sqrt{5}}{\sqrt{5}+\sqrt{5}}$	$\frac{3}{3}$, th				
								^{id} Sit. 2012)	55
	(a)	6	(b)	30	(c)	$\sqrt{15}$	(d)	15	55.
45.	$\frac{1+8}{87}$	876542×8 76543×87	87654 6543	4 is equa	al to		(SSC (CGL 2012)	
	· /	3		0	(c)	1	(d)	2	
46.		simplest							5(
		$\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}}$	1	_+		$+\frac{1}{5}$	— is		56.
	√2	$+\sqrt{3}$ $\sqrt{3}$	$3 + \sqrt{4}$	↓ √4+	√5	√5 +-		CCI 2012)	
			.)					CGL 2012)	
		$\sqrt{3}(\sqrt{2} -$	-1)			$\sqrt{2}\sqrt{3}$	-1)		57.
		$\sqrt{3} - 1$				$\sqrt{2} - 1$			
47.						mes 7 le		thrice of the	58.
	num (a)	ber. Then 14	(b)			18	(SSC ((d)	C GL 2012) 19	
			. /				(*)		
48.	The	simplified	d valu	e of $\frac{\sqrt{32}}{\sqrt{5}}$	$\frac{1}{1} + \sqrt{4}$	$\frac{48}{2}$ is			59.
				νo			ulti-Tas	king 2013)	
	(a)	4	(b)	3				6	
	[(9 5×0 084	5						
49.	$\sqrt{\frac{1}{0}}$	0017×0.1	$\frac{1}{19}$ eq	uals	(5	SSC Mu	ılti-Tas	king 2013)	
		5						0.05	

50.	The value of $1 + \frac{1}{1 + \frac{2}{3 + \frac{4}{5}}}$ is	:: (SSC Sub. Ins. 2013)
51.	(a) $\frac{12}{29}$ (b) $\frac{8}{19}$ The value of	(c) $\frac{48}{29}$ (d) $\frac{2}{19}$
	$\sqrt{19.36} + \sqrt{0.1936} + \sqrt{0.001}$	(SSC Sub. Ins. 2013)
52.	(a) 4.8484 (b) 4.8694 The greatest among	(c) 4.8884 (d) 4.8234 the following numbers
	$(3)^{\frac{1}{3}}, (2)^{\frac{1}{2}}, 1, (6)^{\frac{1}{6}}$ is:	(SSC Sub. Ins. 2013)
	(a) $(2)^{\frac{1}{2}}$ (b) 1	(c) $(6)^{\frac{1}{6}}$ (d) $(3)^{\frac{1}{3}}$
53.	The value of $\sqrt{40 + \sqrt{9\sqrt{81}}}$	is (SSC CHSL 2013)
	(a) 11 (b) $\sqrt{111}$	(c) 9 (d) 7
54.	Which is greater $\sqrt[3]{2}$ or $\sqrt{3}$? (SSC CHSL 2013)
	(a) Equal	(b) Cannot be compared
	(c) $\sqrt[3]{2}$	(d) $\sqrt{3}$
55.	Find the value of $3 + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$	
	(a) 6	(SSC CHSL 2013) (b) 3
	(c) $\frac{3}{2(\sqrt{3}+3)}$	(d) $2\sqrt{3}$
56.		ter than 31 as it is less than 75,
	then the number is. (a) 53 (b) 106	(SSC CHSL 2013) (c) 44 (d) 74
57.		en x is : (SSC CGL 1 st Sit. 2013)
	(a) $2\frac{1}{2}$ (b) -2	(c) 2 (d) 5
58.	Number of digits in the squa	
	(a) 3 (b) 4	(c) 5 (d) 6
59.	A rational number between	$\frac{3}{4}$ and $\frac{3}{8}$ is (SSC CGL 2013)
	(a) $\frac{16}{9}$	(b) $\frac{9}{16}$
	(c) $\frac{12}{7}$	(d) $\frac{7}{3}$

- 60. Find the simplest value of $2\sqrt{50} + \sqrt{18} \sqrt{72}$ (given $\sqrt{2} = 1.414$). (SSC CGL 2013)
 - (a) 10.312 (b) 8.484 (c) 4.242 (d) 9.898
- 61. The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, then the denominator becomes eight times the numerator. Find the fraction. (SSC CGL 2013)

(a)
$$\frac{4}{8}$$
 (b) $\frac{2}{7}$ (c) $\frac{3}{8}$ (d) $\frac{3}{7}$

- 62. If $x^2 = y + z$, $y^2 = z + x$ and $z^2 = x + y$, then the value of
 - $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ is (SSC CGL 2013)
- (a) 2 (b) 0 (c) -1 (d) 1 63. If a = 2, b = 3, then $(a^b + b^a)^{-1}$ is (SSC CGL 2nd Sit. 2013)

(a)
$$\frac{1}{31}$$
 (b) $\frac{1}{17}$ (c) $\frac{1}{21}$ (d) $\frac{1}{13}$

- 64. The smallest positive integer which when multiplied by 392, gives a perfect square is
 (a) 2
 (b) 3
 (c) 5
 (d) 7
- **65.** The fourth root of 24010000 is (SSC CGL 2nd Sit. 2013) (a) 7 (b) 491 (c) 490 (d) 70
- 66. The greatest 4 digit member which is a perfect square, is
 (SSC CGL 2nd Sit. 2013)
 (a) 9999 (b) 9909 (c) 9801 (d) 9081
- 67. The value of $\frac{4+3\sqrt{3}}{7+4\sqrt{3}}$ is (SSC CGL 2nd Sit. 2013)
 - (a) $5\sqrt{3}-8$ (b) $5\sqrt{3}+8$ (c) $8\sqrt{3}+5$ (d) $8\sqrt{3}-5$
- **68.** Which one of the following is the minimum value of the sum of two integers whose product is 24?
- (SSC CGL 2nd Sit. 2013) (a) 25 (b) 11 (c) 8 (d) 10 69. If $(2^3)^2 = 4^x$ then 3^x is equal to (SSC CGL 2nd Sit. 2013) (a) 3 (b) 6 (c) 9 (d) 27
- 70. Evaluate $\frac{\sqrt{24} + \sqrt{6}}{\sqrt{24} \sqrt{6}}$ (SSC Sub. Ins. 2014) (a) 2 (b) 3 (c) 4 (d) 5
- 71. The value of $3 \div \left[(8-5) \div \left\{ (4-2) \div \left(2 + \frac{8}{13} \right) \right\} \right]$ is (SSC Sub. Ins. 2014)
 - (a) $\frac{15}{17}$ (b) $\frac{13}{17}$
 - (c) $\frac{15}{19}$ (d) $\frac{13}{19}$

72. If '+' means ' \div ', ' \times ' means '-', ' \div ' means ' \times ' and '-' means '+', what will be the value of the following expression? $9+3 \div 4-8 \times 2=?$ (SSC Sub. Ins. 2014)

(a)
$$6\frac{1}{4}$$
 (b) $6\frac{3}{4}$ (c) $-1\frac{3}{4}$ (d) 18

73. The next term of the sequence,

$$(1+\frac{1}{2}),(1+\frac{1}{2})(1+\frac{1}{3}),(1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4}),$$
 is
(SSC Sub. Ins. 2014)

(a) 3 (b)
$$\left(1+\frac{1}{5}\right)$$

(c) 5 (d)
$$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{5}\right)$$

74. The simplified value of

$$\left(\sqrt{6} + \sqrt{10} - \sqrt{21} - \sqrt{35}\right)\left(\sqrt{6} - \sqrt{10} + \sqrt{21} - \sqrt{35}\right)$$
 is

(SSC Sub. Ins. 2014)

- (a) 13 (b) 12 (c) 11 (d) 10
- 75. Ram left ¹/₃ of his property to his widow and ³/₅ of the remainder to his daughter. He gave the rest to his son who received ₹ 6,400. How much was his original property worth? (SSC CHSL 2014)

(a) ₹16,000
(b) ₹32,000
(c) ₹24,000
(d) ₹1,600
76. Which one of the following is true ?
(SSC CHSL 2014)

(a) $\sqrt{5} + \sqrt{3} > \sqrt{6} + \sqrt{2}$ (b) $\sqrt{5} + \sqrt{3} < \sqrt{6} + \sqrt{2}$ (c) $\sqrt{5} + \sqrt{3} = \sqrt{6} + \sqrt{2}$ (d) $(\sqrt{5} + \sqrt{3})(\sqrt{6} + \sqrt{2}) = 1$

77. Arrange the following in ascending order 3³⁴, 2⁵¹, 7¹⁷, we get (SSC CGL 1st Sit. 2014) (a) $3^{34} > 2^{51} > 7^{17}$ (b) $7^{17} > 2^{51} > 3^{34}$ (c) $3^{34} > 7^{17} > 2^{51}$ (d) $2^{51} > 3^{34} > 7^{17}$ 78. 2km 5m is equal to: (SSC Sub. Ins. 2015) (a) 2.005 km (b) 2.0005 km (c) 2.5 km (d) 2.05 km 79. The simplified value of $(0.0539 - 0.002) \times 0.4 + 0.56 \times 0.07$ is: 0.04×0.25 (SSC Sub. Ins. 2015) 59.96 599.6 (a) (b) (c) 0.5996 (d) 5.996

80.
$$\frac{\sqrt{10 + \sqrt{25 + \sqrt{108 + \sqrt{154 + \sqrt{225}}}}}}{3\sqrt{8}} = ?$$

(SSC Sub. Ins. 2015)

(a) 8 (b)
$$\frac{1}{2}$$
 (c) $\sqrt{2}/3$ (d) 4

Simplification and Square & Cube Root

(SSC CGL 2016)

- 81. If $3^{2x-y} = 3^{x+y} = \sqrt{27}$, then the value of 3^{x-y} will be: **90.** If the numbers $\sqrt[3]{9}$, $\sqrt[4]{20}$, $\sqrt[6]{25}$ are arranged in ascending order, then the right arrangement is (SSC Sub. Ins. 2015) (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{1}{\sqrt{27}}$ (c) $\sqrt{3}$ (d) 3 82. The simplified value of following is : $\left(\frac{3}{15}a^{5}b^{5}c^{3}\times\frac{5}{9}ab^{5}c^{4}\right)\div\frac{10}{27}a^{2}bc^{3}$ (SSC CHSL 2015) (a) $\frac{9}{10}a^2bc^4$ (b) $\frac{1}{10}a^4b^4c^{10}$ (c) $\frac{3}{10}a^4b^{10}c^4$ (d) $\frac{3}{10}ab^4c^3$ 83. In an exam the sum of the scores of A and B is 120, that of B and C is 130 and that of C and A is 140. Then the score of C (SSC CHSL 2015) is: (b) 60 (c) 70 (d) 75 (a) 65 84. The sum of four numbers is 48. When 5 and 1 are added to the first two; and 3 & 7 are subtracted from the 3rd & 4th, the numbers will be equal. The numbers are (SSC CGL 1st Sit. 2015) (a) 4, 12, 12, 20 (b) 5, 11, 13, 19 (c) 6, 10, 14, 18 (d) 9, 7, 15, 17 85. The value of $\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{3-\sqrt{8}}$ is (SSC CGL 1st Sit. 2015) (a) 0 (b) 1 (c) 5 (d) 7 86. Choose the incorrect relation(s) from the following: (i) $\sqrt{6} + \sqrt{2} = \sqrt{5} + \sqrt{3}$ (SSC CGL 1st Sit. 2015) (ii) $\sqrt{6} + \sqrt{2} < \sqrt{5} + \sqrt{3}$ (iii) $\sqrt{6} + \sqrt{2} > \sqrt{5} + \sqrt{3}$ (a) (i) (b) (ii) (c) (i) and (iii) (d) (ii) and (iii) 87. If $x = \frac{1}{\sqrt{2} + 1}$ then (x + 1) equals to (SSC CGL 2nd Sit. 2015) (a) 2 (b) $\sqrt{2} - 1$ (c) $\sqrt{2} + 1$ (d) $\sqrt{2}$ 88. If $\frac{3}{4}$ of a number is 7 more than $\frac{1}{6}$ of the number, then $\frac{5}{3}$ of the number is : (SSC CGL 2015) (a) 15 (b) 18 (c) 12 (d) 20 **89.** The value of $\frac{(2.3)^3 + 0.027}{(2.3)^3 - 0.69 + 0.09}$ is : (SSC CGL 2016) (a) 2 (b) 2.27 (c) 2.33 (d) 2.6
 - (a) $\sqrt[6]{25} < \sqrt[4]{20} < \sqrt[3]{9}$ (b) $\sqrt[3]{9} < \sqrt[4]{20} < \sqrt[6]{25}$ (c) $\sqrt[4]{20} < \sqrt[6]{25} < \sqrt[3]{9}$ (d) $\sqrt[6]{25} < \sqrt[3]{9} < \sqrt[4]{20}$ 91. If $\frac{1}{a + \frac{1}{b + \frac{1}{c + \frac{1}{2}}}} = \frac{16}{23}$, then the value of a + b + c(SSC Sub Ins. 2016) (c) 9 (b) 3 (a) 6 (d) 12 92. The sum of two numbers is $15\frac{1}{3}$ and their difference is $4\frac{2}{3}$. (SSC Sub Ins. 2016) The product of the numbers is (b) $48\frac{2}{2}$ (c) $53\frac{1}{2}$ (d) 60 (a) 50 **93.** If 2x - 3(2x - 2) > x - 1 < 2 + 2x, then x can take which of the following values? (SSC CHSL 2017) (a) 2 -2 (c) 4 (d) -4 (b) 94. If N = $(\sqrt{7} - \sqrt{3})/(\sqrt{7} + \sqrt{3})$, then what is the value of N+(1/N)? (SSC Sub. Ins. 2017) (a) $2\sqrt{2}$ (b) 5 (c) 10 (d) 13 **95.** What is the simplified value of $(2+1)(2^2+1)(2^4+1)(2^8+1)$? (a) 2^8-1 (b) $2^{16}-1$ (c) $2^{32}-1$ (d) $2^{64}-1$ 96. $\frac{5.75 \times 5.75 \times 5.75 + 3.25 \times 3.25 \times 3.25}{57.5 \times 57.5 + 32.5 \times 32.5 - 57.5 \times 32.5}$ is equal to: (SSC Sub. Ins. 2018) (a) 0.0009 (b) 0.9 (c) 0.009 (d) 0.09 **97.** The value of $3\frac{1}{5} - \left| 2\frac{1}{2} - \left\{ \frac{5}{6} - \left(\frac{2}{5} + \frac{3}{10} - \frac{4}{15} \right) \right\} \right|$ is: (SSC Sub. Ins. 2018) (a) $\frac{11}{10}$ (b) $\frac{9}{10}$ (c) $\frac{13}{5}$ (d) $\frac{6}{5}$ **98.** $5\frac{5}{6} + \left| 2\frac{2}{3} - \left\{ 3\frac{3}{4} \left(3\frac{4}{5} \div 9\frac{1}{2} \right) \right\} \right|$ is equal To: (SSC Sub. Ins. 2018)
 - (a) $\frac{44}{7}$ (b) 7 (c) $\frac{43}{6}$ (d) $\frac{22}{3}$

20

99. The simplified value of $\frac{0.01404}{24^2 + 6^2 - 144}$ is : (SSC CHSL-2018) (b) 6×10^{-5} (a) 3×10^{-5} (c) 2.4×10^{-4} (d) 3×10^{-4} 100. The simplified value of $\frac{1}{2} \text{ of } \frac{8}{5} \div \left\{ 2\frac{1}{5} - \left(\frac{5}{16} + \frac{3}{5} \times 1\frac{7}{8} \div \frac{2}{3} \right) \right\} \text{ is: (SSC CHSL-2018)}$ (a) $\frac{1}{4}$ (b) 4 (c) $\frac{1}{5}$ (d) 5 **101.** The value of $4.5 - (3.2 \div 0.8 \times 5) + 3 \times 4 \div 6$ is: (SSC CGL-2018) (a) -13.5 (b) 4.2 (c) -8.5(d) 5.7 **102.** The value of $15.2 + 5.8 \div 2.9 \times 2 - 3.5 \times 2 \div 0.5$ is equal to: (SSC CGL-2018) (b) 3.2 (a) 4.8 (c) 5.2 (d) 5.4 **103.** What is the value of: $(9 \div 30)^2 \times 2.4 + 0.3 \text{ of } 12 \times (1 - 0.3)^2 + 9 \times (0.3)^2 = ?$ (SSC MTS 2018) (b) 3.69 (c) 2.79 (a) 3.43 (d) 2.17 **104.** What is the value of: $2 \text{ of } 3 \div 3 \times 2 + \{4 \times 3 - (5 \times 2 + 3)\} = ?$ (SSC MTS 2018) (a) 3 (b) -24 (c) 6 (d) -21105. If '+' means '-', '-' means '+', '×' means '÷' and '÷' means, '×', then the value of $\frac{42 - 12 \times 3 + 8 \div 2 + 15}{8 \times 2 - 4 + 9 \div 3}$ is : (SSC CGL 2019-20) (a) $\frac{15}{19}$ (b) $-\frac{5}{3}$ (c) $-\frac{15}{19}$ (d) $\frac{5}{3}$ **106.** What is the value of 32×4 of 2×3 $\left[5 \text{ of } 6 - \{7 \text{ of } 8(10 + 6 \text{ of } \frac{5}{6} \times 5 - 1) \div 80\} \right] - 7 \times 3 \div 2?$ (SSC MTS 2019-20) (a) 7.5 (b) 17.5 (c) 12.5 (d) 24.5 107. What is the value of $\frac{72 \div 9 + 3 - 6 - (2 \times 3) + 5 \text{ of } 3 - (1 + 5 \times 2 - 2)}{8 \div 4 + 2 - (6 \times 8 \div 2) + (7 \times 4 - 2 \times 2)}?$ (SSC MTS 2019-20) (a) $\frac{11}{4}$ (b) $\frac{5}{4}$ (c) 0 (d) $\frac{15}{4}$ 108. If $\frac{a}{b} = \frac{3}{4}, \frac{b}{c} = \frac{4}{3}$ and $\frac{c}{d} = \frac{5}{6}$, then the sum of the numerator and the denominator (which are coprimes) of $\left(\frac{a}{d}\right)^{10}$ is : (SSC MTS 2019-20) (d) 513 (a) 1025 (b) 4097 (c) 2049

109. The value of 90 ÷ 20 of 6 × [11 ÷ 4 of {3 × 2 - (3 - 8)}] ÷ (9 ÷ 3 × 2) is: (SSC CGL 2020-21) (a) $\frac{9}{8}$ (b) $\frac{3}{8}$ (c) $\frac{1}{36}$ (d) $\frac{1}{32}$ **110.** Simplify the following expression. (SSC CHSL 2020-21) $5\frac{1}{3}$ ÷ $\left[7-3$ ÷ $\left(1-\frac{1}{4}\right)$ × $\frac{2}{3}$ +1 $\left]$ -3÷1+2

(a) 15 (b) 0 (c)
$$-4$$
 (d) $\frac{1}{41}$

111. The value of $\frac{7}{10} \div \frac{7}{5} of \left[\frac{21}{10} + \frac{13}{5}\right] + \left[\frac{1}{10} \times \frac{10}{47} - \frac{6}{47}\right]$ is :

(

 $\frac{1}{8}$ is :

(SSC MTS 2020-21)

٦

(a) 1 (b) 10 (c) 0 (d) 5 **112.** What is the simplified value of **(SSC MTS 2020-21)**

$$\left\{ \left(4 - \frac{2}{1 + \frac{2}{1 - \frac{1}{2 + \frac{3}{4}}}} \right) \div 1\frac{5}{12} \text{ of } \frac{72}{145} - (4 + 3 \div 0.5 - 1) \right\} ?$$
(a) 1 (b) -4 (c) -2 (d) 3

113. The value of
$$\frac{40 - \frac{3}{4} \text{ of } 32}{37 - \frac{3}{4} \text{ of } (34 - 6)}$$
 is: (SSC Sub-Inspector 2020-21)

(a)
$$\frac{1}{2}$$
 (b) 1 (c) $-\frac{1}{2}$ (d) 0

114. The value of
$$8 - 3 \div 6$$
 of $2 + (4 \div 4 \text{ of } \frac{1}{4}) \div 8 + (4 \times 8 \div \frac{1}{4}) \times \frac{1}{4}$

(a)
$$\frac{7}{4}$$
 (b) $-\frac{97}{4}$ (c) $-\frac{7}{4}$ (d) $\frac{97}{4}$

115. The value of $\frac{6.35 \times 6.35 \times 6.35 + 3.65 \times 3.65 \times 3.65}{63.5 \times 63.5 + 36.5 \times 36.5 - 63.5 \times 36.5}$ is equal to: (a) 0.1 (b) 10 (c) 1 (d) 0.01 **116.** If $A = \frac{1}{2} + \frac{1}{3} \times \frac{1}{4} \div \frac{1}{5}$ and $B = \frac{1}{2} \div \frac{1}{3} \times \frac{1}{4} + \frac{1}{5}$, then what is the value of A - B? (a) $\frac{17}{20}$ (b) $\frac{9}{20}$ (c) $\frac{7}{40}$ (d) $\frac{1}{5}$

Simplification and Square & Cube Root

117. If
$$\frac{32+16-5\times 2}{11+22\times 8-5\times 2} = \frac{1}{p}$$
, then what is the value of P?
(SSC MTS- 2021-22)
(a) $\frac{4}{3}$ (b) $\frac{5}{4}$ (c) $\frac{3}{4}$ (d) $\frac{4}{5}$
118. The value of $(4^3+4)+[5^2-(7^2-41)]$ is:
(SSC CHSL 2021-2022)
(a) 8 (b) 17 (c) 5 (d) 4
119. Simplify $(957+932)^2-4\times 957\times 932.$
(a) 576 (b) 676 (c) 529 (d) 625
120. What is the value of $(-91)^{1+}-(.09)^3$ / [$(-91)^2-.0819$
 $+(.09)^2$]? (SSC CHSL 2023)
(a) 1 (b) 5 (c) 4 (d) 6
121. The value of $117 \div 45$ of $(1/5) + (12/5) \times (20/3)$ is:
(SSC CHSL 2023)
(a) 28 (b) 29 (c) 31 (d) 27
122. Find the value of the following expression:
 $372 \div 56 \times 7-5+2$ (SSC CGL 2021-22)
(a) 58 (b) $-2\frac{95}{98}$ (c) $43\frac{1}{2}$ (d) $2\frac{93}{98}$
123. Solve the following. (SSC Sub-Inspector 2022)
(a) 58 (b) $-2\frac{95}{98}$ (c) $\frac{11}{18}$ (d) $\frac{15}{19}$
124. The value of $\frac{3\sqrt{-2744} \times \sqrt[3]{-216}}{3\sqrt{\frac{64}{729}}}$ is:
(SSC Sub-Inspector 2022)
(a) 164 (b) 152 (c) 189 (d) 156
125. The value of $\frac{3\sqrt{-2744} \times \sqrt[3]{-216}}{3\sqrt{\frac{64}{729}}}$ is:
(SSC Sub-Inspector 2022)
(a) 164 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 1 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 1 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 1 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 1 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 1 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 1 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 1 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 1 (b) 4 (c) 3 (d) 5
126. Simplify the following (SSC Sub-Inspector 2022)
(a) 24\frac{1}{4} (b) $21\frac{1}{9}$ (c) $27\frac{4}{5}$ (d) $29\frac{4}{9}$
127. What is the value of $28 \times 25 \div 7 \times 15 \div 63 \times 56 \div 72 \times 5 \div 24$
 $\times 7 \div 8?$ (SSC MTS 2022)

128. Find the value of $\frac{\sqrt{1.24} \times \sqrt{2.79}}{\sqrt{2.64} \times \sqrt{5.94}}$

(SSC CGL 2022, Tier-II)

(SSC CGL 2022, Tier-II)

(SSC MTS 2023)

(a)
$$\frac{31}{44}$$
 (b) $\frac{33}{64}$ (c) $\frac{31}{66}$ (d) $\frac{33}{31}$

129. What is the value of

$$\left[\frac{1}{8} + \left\{\frac{1}{6} \times \left(\frac{36}{45} \div \frac{24}{25}\right) - \left(\frac{12}{21} \times \frac{14}{15} \div \frac{24}{25}\right)\right\} + \frac{27}{36}\right]?$$

(a)
$$\frac{1}{27}$$
 (b) $\frac{1}{108}$ (c) $\frac{1}{72}$ (d) $\frac{1}{36}$

30. Simplify:

 $(13 \div 13 \text{ of } 13 + 13) / (13 \div 13 \times 13 + 13)$

(a)
$$\frac{1}{26}$$
 (b) $\frac{15}{26}$ (c) $\frac{13}{96}$ (d) $\frac{85}{169}$

131. If $\sqrt[3]{0.08 \times 0.8 \times p} = 0.008 \times 0.8 \times \sqrt[3]{q}$, then find the value

of $\frac{p}{q}$:(SSC CHSL 2023, Tier-II)(a) $8^3 \times 10^{-9}$ (b) $8^3 \times 10^{-8}$ (c) $8^4 \times 10^{-8}$ (d) $8^4 \times 10^{-9}$

132. If $X = \left(\frac{3}{2}\right)^2 \times \left(\frac{2}{3}\right)^{-4}$, find the value of X^{-2} .

(SSC CHSL 2023, Tier-II)

(a)
$$\left(\frac{3}{2}\right)^{12}$$
 (b) $\left(\frac{2}{3}\right)^{6}$
(c) $\left(\frac{3}{2}\right)^{6}$ (d) $\left(\frac{2}{3}\right)^{12}$

133. Evaluate $\frac{0.04}{0.05}$ of $\frac{\left(3\frac{1}{3}-2\frac{1}{2}\right) \div \frac{1}{2}$ of $1\frac{1}{4}}{\frac{1}{3}+\frac{1}{5}$ of $\frac{1}{9}$

(SSC Sub-Inspector 2023) (a) 0.3 (b) 5 (d) 0.03 (c) 3 **34.** The value of $11 \times 11 + 11 \div 11 - 11 \times 11 + 11 + 11 \times 11 - 11$ (SSC Sub-Inspector 2023) -11×11 is: (a) 1 (b) 11 (0) 11 (d) 0 (c) 121 **35.** Simplify: $[0.08 - \{3.5 - 4.9 - (12.5 - 7.8 - 4.6)\}]$ (SSC CGL 2023, Tier-I) (b) 0.08 (a) 2.58 (c) 12.58 (d) 1.58

HINTS & EXPLANATIONS

1. (c) If 0.5 = a and 0.3 = b then,

Expression =
$$\frac{a^3 + b^3}{a^2 - ab + b^2}$$

$$=\frac{(a+b)(a^2-ab+b^2)}{a^2-ab+b^2}=a+b=0.5+0.3=0.8$$

2. (a) 1 + 0.6 + 0.06 + 0.006 + 0.0006 + ... = 1.666...

$$=1.\overline{6} = 1\frac{6}{9} = 1\frac{2}{3}$$

3. (b) Expression

$$=\sqrt{\frac{0.009 \times 0.036 \times 0.016 \times 0.08}{0.002 \times 0.0008 \times 0.0002}} = \sqrt{\frac{9 \times 32 \times 16 \times 8}{2 \times 8 \times 2}}$$

= 3 × 2 × 3 × 2 = 36

4. (a)
$$\sqrt{0.09} = \sqrt{0.3 \times 0.3} = 0.3$$

5. (c)
$$0.121212.... = 0.\overline{12} = \frac{12}{99} = \frac{4}{33}$$

6. (b) $675 = 5 \times 5 \times 3 \times 3 \times 3 = 5$ No. to be multiplied

7. (a)
$$1\frac{1}{2} + 11\frac{1}{2} + 111\frac{1}{2} + 111\frac{1}{2} = 1234 + 2 = 1236$$

8. (b) $0\overline{001} = 1$

8. (b)
$$0.001 = \frac{1}{999}$$

9. (a)
$$\frac{4.41 \times 0.16}{2.1 \times 1.6 \times 0.21} = \frac{441 \times 16}{21 \times 16 \times 21} = 1$$

10. (b) If 256 = a and 144 = b, then

$$\frac{a^2 - b^2}{a - b}$$

$$[a - b = 256 - 144 = 112]$$

$$= \frac{(a + b)(a - b)}{(a - b)} = a + b = 256 + 144 = 400$$

11. (b)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)((2n+1))}{6}$$

 $\therefore 1^2 + 2^2 + 3^2 + \dots + 10^2 = \frac{10(10+1)(20+1)}{6} = 385$
12. (a) $\left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{5}\right) \dots \left(1 - \frac{1}{24}\right) \left(1 - \frac{1}{25}\right)$
 $= \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \dots \times \frac{23}{24} \times \frac{24}{25} = \frac{2}{25}$
13. (c) $\left[\left(\sqrt[5]{x^{-3/5}}\right)^{\frac{-5}{3}}\right]^5 = \left(x^{-\frac{3}{5}}\right)^{\frac{1}{5} \times \frac{-5}{3} \times 5} = x^{-\frac{3}{5} \times \frac{-5}{3}} = x$

14. (d)
$$0.1 \times 0.01 \times 0.001 \times 10^7 = 10^{-6} \times 10^7 = 10$$

15. (b)
$$\frac{15}{16} = 0.94; \frac{19}{20} = 0.95$$

 $\frac{24}{25} = 0.96; \frac{34}{35} = 0.97$

16. (c)
$$1.\overline{27} = 1\frac{27}{99} = 1\frac{3}{11} = \frac{14}{11}$$

17. (d)
$$\frac{3.20(3.25-3.05)}{0.064}$$

$$=\frac{3.20\times0.20}{0.064}=10$$

18. (a) 8+9+10=27 11+12+13=36So, let 3 consecutive no x, x + 1, x + 2 Next 3 consecutive no x + 3; x + 4, x + 5 i.e. sum of last 3 consecutive no. is 9 more than sum of first 3=27+9=36

19. (d)
$$\frac{0.01 - 0.0001}{0.0001} + 1 = \frac{0.0099}{0.0001} + 1 = 99 + 1 = 100$$

20. (b)
$$\sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 - \dots}}}} = x$$

 $6 = 3 \times 2$
By trick = 3 answer

21. (a) Expression =
$$\frac{(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})}$$

Rationalising the denominator,

$$\frac{(\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})} = \frac{(\sqrt{3}+\sqrt{2})^2}{3-2} = (\sqrt{3}+\sqrt{2})^2$$
$$\therefore \sqrt{\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}} = \sqrt{(\sqrt{3}+\sqrt{2})^2} = \sqrt{3}+\sqrt{2}$$

22. (a) Expression

$$= \frac{\frac{7}{3} - \frac{13}{11}}{3 + \frac{1}{3 + \frac{1}{\frac{9+1}{3}}}} = \frac{\frac{77 - 39}{33}}{3 + \frac{1}{3 + \frac{3}{10}}}$$
$$= \frac{\frac{38}{33}}{3 + \frac{1}{\frac{30+3}{10}}} = \frac{\frac{38}{33}}{3 + \frac{10}{33}} = \frac{\frac{38}{33}}{\frac{99+10}{33}} = \frac{38}{33} \times \frac{33}{109} = \frac{38}{109}$$

Simplification and Square & Cube Root

23. (b) Expression

$$= \frac{3\sqrt{2}}{\sqrt{3} + \sqrt{6}} - \frac{4\sqrt{3}}{\sqrt{6} + \sqrt{2}} + \frac{\sqrt{6}}{\sqrt{3} + \sqrt{2}}$$

$$= \frac{3\sqrt{2}(\sqrt{6} - \sqrt{3})}{(\sqrt{6} + \sqrt{3})(\sqrt{6} - \sqrt{3})} - \frac{4\sqrt{3}(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} + \frac{\sqrt{6}}{(\sqrt{3} + \sqrt{2})} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

$$= \frac{3\sqrt{2}(\sqrt{6} - \sqrt{3})}{(6 - 3)} - \frac{4\sqrt{3}(\sqrt{6} - \sqrt{2})}{(6 - 2)} + \frac{\sqrt{6}(\sqrt{3} - \sqrt{2})}{(3 - 2)}$$

$$= \sqrt{2}(\sqrt{6} - \sqrt{3}) - \sqrt{3}(\sqrt{6} - \sqrt{2}) + \sqrt{6}(\sqrt{3} - \sqrt{2})$$

$$= \sqrt{12} - \sqrt{6} - \sqrt{18} + \sqrt{6} + \sqrt{18} - \sqrt{12} = 0$$
24. (b) $\frac{(0.05)^2 + (0.41)^2 + (0.073)^2}{(0.005)^2 + (0.41)^2 + (0.073)^2} = 100$
25. (b) $9\sqrt{x} = \sqrt{3 \times 2 \times 2} + \sqrt{3 \times 7 \times 7}$

$$\Rightarrow 9\sqrt{x} = 2\sqrt{3} + 7\sqrt{3} = 9\sqrt{3}$$

$$\therefore x = 3$$
26. (b) $\sqrt[3]{1 - \frac{127}{343}} = \sqrt[3]{\frac{343 - 127}{343}}$

$$= \sqrt[3]{\frac{216}{343}} = \sqrt[3]{\frac{60^3}{(7)^3}} = \frac{6}{7} = 1 - \frac{1}{7}$$
27. (a) Let the numbers be x and y.

$$\therefore x (x+y) = 247$$
and $y (x+y) = 114$

$$\Rightarrow x^2 + xy = 247$$
 and $xy + y^2 = 114$
On adding;

On adding;

$$x^2 + xy + xy + y^2 = 247 + 114$$

 $\Rightarrow x^2 + 2xy + y^2 = 361$
 $\Rightarrow (x + y)^2 = 19^2 \Rightarrow x + y = 19$

$$28. (a) Let the number be x.$$

29.

$$\therefore \frac{x}{7} - \frac{x}{11} = 100$$

$$\Rightarrow \frac{11x - 7x}{11 \times 7} = 100$$

$$\Rightarrow 4x = 77 \times 100$$

$$\Rightarrow x = \frac{77 \times 100}{4} = 1925$$
(d)
$$\frac{4\sqrt{3} + 5\sqrt{2}}{\sqrt{2}}$$

$$\Rightarrow \frac{4\sqrt{3} + 3\sqrt{2} + 2\sqrt{2}}{4\sqrt{3} + 3\sqrt{2}} \Rightarrow \frac{1 + 2\sqrt{2}}{4\sqrt{3} + 3\sqrt{2}}$$

By Rationalising

$$\frac{1+2\sqrt{2}(4\sqrt{3}-3\sqrt{2})}{(4\sqrt{3}+3\sqrt{2})(4\sqrt{3}-3\sqrt{2})}$$

$$\frac{1+8\sqrt{6}-12}{48-18}, \frac{1+8\sqrt{6}-12}{30}, \frac{30-12+8\sqrt{6}}{30}$$

$$\frac{18}{30}+\frac{18}{30}\sqrt{6} = a + b\sqrt{6}$$

$$\frac{3}{5}+\frac{4}{15}\sqrt{6} = a + b\sqrt{6}$$

$$a = \frac{3}{5}, \quad b = \frac{4}{15}$$
30. (a) $x + \frac{2}{\frac{3+\frac{4}{30+7}}{6}} = 10 \Rightarrow x + \frac{2}{3+\frac{4\times6}{37}}$

$$\Rightarrow x + \frac{2}{3+\frac{24}{37}} = 10 \Rightarrow x + \frac{2}{3+\frac{4}{37}} = 10$$

$$\Rightarrow x + \frac{2\times37}{135} = 10 \Rightarrow x + \frac{74}{135} = 10$$

$$\Rightarrow x = 10 - \frac{74}{135} = \frac{1350-74}{135} = \frac{1276}{135}$$
31. (b) $3 + \frac{1}{\sqrt{3}} + \left(\frac{1}{3+\sqrt{3}} - \frac{1}{3-\sqrt{3}}\right)$

$$= 3 + \frac{1}{\sqrt{3}} + \left(\frac{3-\sqrt{3}-3-\sqrt{3}}{9-3} = 3 + \frac{1}{\sqrt{3}} - \frac{\sqrt{3}}{3} = 3 + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} = 3$$
32. (b) Let the number be x

2. (b) Let the number be
$$x$$

$$\therefore \frac{x+12}{6} = 112$$

$$\Rightarrow x+12 = 672$$

$$\Rightarrow x = 672 - 12 = 660$$

$$\therefore \text{ Correct answer} = \frac{660}{6} + 12 = 110 + 12 = 122$$

- **33.** (c) By going options, 26 years is the present age. Present age be 26, then last year age was 25 which represents a perfect square and next year age would be 27 which represents a cubic number.
- **34.** (a) Expression is $(2.1)^2 \times \sqrt{0.0441} = 4.41 \times 0.21$ =0.9261

35. (b)
$$\sqrt[3]{1372} \times \sqrt[3]{1458}$$

$$=7\sqrt[3]{4} \times 9\sqrt[3]{2} = 63 \times \sqrt[3]{4} \times 2 = 63 \times 2 = 126$$

36. (d)
$$\frac{547.527}{0.0082} = x \Rightarrow \frac{547527}{1000} \times \frac{10000}{82} = x$$
$$\Rightarrow \frac{547527}{82} = \frac{x \times 1000}{10000} \Rightarrow \frac{x}{10}$$
37. (a)
$$\begin{bmatrix} 3^n \end{bmatrix}^{\frac{1}{3}} = 27$$
$$\Rightarrow \quad 3^{\frac{n}{3}} = 3^{3}$$
Comparing, $\frac{n}{3} = 3$
$$x = 9$$
38. (b) Time difference between 9.00 A.M & 2.00 P.M = 5 hours Temperature difference between 21°C & 36°C = 36-21 = 15°C Now, Time difference between 9.00 A.M & 12.00 Noon = 3 hrs. In 5 hours $\frac{\text{temperature}}{\text{difference}} 15°C$ So, In 3 hours $\frac{\text{temperature}}{\text{difference}} = 15°C$ So, temperature at noon = 21 + 9 = 30°C So, temperature at noon = 21 + 9 = 30°C 39. (a) $x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots + \infty}}$

$$x^{2} = 6 + \sqrt{6 + \sqrt{6 + \dots \infty}}$$

$$\Rightarrow x^{2} = 6 + x$$

$$\Rightarrow x^{2} - x - 6 = 0$$

$$\Rightarrow x^{2} - 3x + 2x - 6 = 0$$

$$\Rightarrow x (x - 3) + 2 (x - 3) = 0$$

$$\Rightarrow (x - 3) (x + 2) = 0$$

$$\Rightarrow x = 3 \text{ because } x \neq -2$$

By trick $3 \times 2 = 6$

40. (a)
$$\sqrt{6} \times \sqrt{15} = x\sqrt{10}$$

 $\Rightarrow \sqrt{2} \times 3 \times \sqrt{3 \times 5} = x\sqrt{10}$
 $\Rightarrow \sqrt{2} \times \sqrt{5} \times 3 = x\sqrt{10}$
 $\Rightarrow 3\sqrt{10} = x\sqrt{10} \Rightarrow x = 3$
41. (b) $\frac{1}{3+\sqrt{5}} = \frac{3-\sqrt{5}}{(3+\sqrt{5})(3-\sqrt{5})}$
 $= \frac{3-\sqrt{5}}{9-5} = \frac{3-\sqrt{5}}{4}$
 $\therefore 3 - \frac{3+\sqrt{5}}{4} - \frac{3-\sqrt{5}}{4}$
 $= \frac{12-3-\sqrt{5}-3+\sqrt{5}}{4} = \frac{6}{4} = \frac{3}{2}$

42. (d) According to the question,

$$\frac{n}{2} + \frac{n}{4} + \frac{n}{5} + 7 = n$$

$$\Rightarrow \frac{10n + 5n + 4n}{20} + 7 = n \Rightarrow n - \frac{19n}{20} = 7$$

$$\Rightarrow \frac{n}{20} + 7 = n \Rightarrow n - \frac{19n}{20} = 7$$

$$\Rightarrow \frac{n}{20} = 7 \Rightarrow n = 20 \times 7 = 140$$
43. (c) $675 = 5 \times 5 \times 3 \times 3 \times 3$
 $= 3^3 \times 5^2$
... Required number = 5
44. (d) $2\sqrt{x} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} - \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$
(d) $2\sqrt{x} = \frac{\sqrt{5} + \sqrt{3}}{(\sqrt{5} - \sqrt{3})^2} - (\sqrt{5} - \sqrt{3})^2}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} = \frac{4 \cdot \sqrt{5} \cdot \sqrt{3}}{5 - 3} = 2\sqrt{15}$

... $2\sqrt{x} = 2\sqrt{15} \Rightarrow x = 15$
45. (c) $\frac{1 + 876542(876542 + 2)}{(876542 + 1)^2}$
 $= \frac{1 + (876542)^2 + 2 \times 876542}{(876542 + 1)^2} = \frac{(876542 + 1)^2}{(876542 + 1)^2} = 1$
46. (b) $\frac{1}{\sqrt{2} + \sqrt{3}}$
 $= \frac{1}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2}$
 $= \sqrt{3} - \sqrt{2}$
 $\therefore \frac{1}{\sqrt{4} + \sqrt{3}} = \sqrt{4} - \sqrt{3};$
 $\frac{1}{\sqrt{4} + \sqrt{5}} = \sqrt{5} - \sqrt{4};$
 $\frac{1}{\sqrt{5} + \sqrt{6}} = \sqrt{6} - \sqrt{5}$
 \therefore Expression
 $= \sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + \sqrt{5} - \sqrt{4} + \sqrt{6} - \sqrt{5}$
 $= \sqrt{6} - \sqrt{2} = \sqrt{2}(\sqrt{3} - 1)$
47. (a) If the number be x, then
 $x + 21 = 3x - 7$
 $\Rightarrow 3x - x = 21 + 7 \Rightarrow 2x = 28$
 $\Rightarrow x = 14$
48. (c) $\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}} = \frac{\sqrt{2 \times 2 \times 2 \times 2 \times 2} + \sqrt{2 \times 2 \times 2 \times 2 \times 2}}{\sqrt{2 \times 2 \times 2} + \sqrt{2 \times 2 \times 2 \times 2}}$