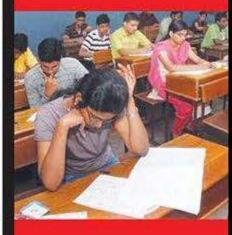
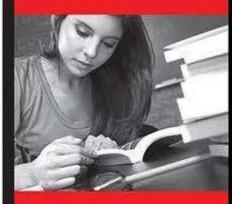


QUANTITATIVE APTITUDE

FOR COMPETITIVE EXAMINATIONS FULLY SOLVED

AS PER NEW EXAMINATION PATTERN


An ideal book for: Bank PO, SBI-PO, IBPS, RBI Exams MBA, MAT, CMAT, GMAT, CAT, IIFT, IGNOU SSC Combined Preliminary Exam, Hotel Management Sub-Inspectors of Police, CBI, CPO Exams UPSC— CSAT, SCRA and other State Services Exams Railway Recruitment Board Exams Campus Recruitment Tests


With Latest Questions and Solutions

Dr. R.S. AGGARWAL

Quantitative Aptitude

For Competitive Examinations

(Fully Solved)

As per New Examination Pattern

Disclaimer: While the author of this book have made every effort to avoid any mistakes or omission and have used their skill, expertise and knowledge to the best of their capacity to provide accurate and updated information. S Chand does not give any representation or warranty with respect to the accuracy or completeness of the contents of this publication and are selling this publication on the condition and understanding that they shall not be made liable in any manner whatsoever. S Chand expressly disclaims all and any liability/responsibility to any person, whether a purchaser or reader of this publication or not, in respect of anything and everything forming part of the contents of this publication. S Chand shall not be responsible for any errors, omissions or damages arising out of the use of the information contained in this publication.

Further, the appearance of the personal name, location, place and incidence, if any; in the illustrations used herein is purely coincidental and work of imagination. Thus the same should in no manner be termed as defamatory to any individual.

Quantitative Aptitude

For Competitive Examinations

(Fully Solved)

As per New Examination Pattern

An ideal book for :

- Bank PO, SBI-PO, IBPS, RBI Exams
- MBA, MAT, CMAT, GMAT, CAT, IIFT, IGNOU
- SSC Combined Preliminary Exams, Hotel Management
- Sub-Inspectors of Police, CBI, CPO Exams
- UPSC-CSAT, SCRA and other State Services Exams
- Railway Recruitment Board Exams
- Campus Recruitment Tests

Dr. R.S. AGGARWAL

S Chand And Company Limited (AN ISO 9001 : 2008 COMPANY) RAM NAGAR, NEW DELHI - 110 055

S Chand And Company Limited

	(An ISO 9001 : 2008 Company)
S. CHAND	Head Office: 7361, RAM NAGAR, NEW DELHI - 110 055
empowering minds	Phone: 23672080-81-82, 9899107446, 9911310888 Fax: 91-11-23677446
0	www.schandpublishing.com; e-mail: helpdesk@schandpublishing.com
Branches :	
Ahmedabad	: Ph: 27541965, 27542369, ahmedabad@schandpublishing.com
Bengaluru	: Ph: 22268048, 22354008, bangalore@schandpublishing.com
Bhopal	: Ph: 4274723, 4209587, bhopal@schandpublishing.com
Chandigarh	: Ph: 2625356, 2625546, chandigarh@schandpublishing.com
Chennai	: Ph: 28410027, 28410058, chennai@schandpublishing.com
Coimbatore	: Ph: 2323620, 4217136, coimbatore@schandpublishing.com (Marketing Office)
Cuttack	: Ph: 2332580, 2332581, cuttack@schandpublishing.com
Dehradun	: Ph: 2711101, 2710861, dehradun@schandpublishing.com
Guwahati	: Ph: 2738811, 2735640, guwahati@schandpublishing.com
Hyderabad	: Ph: 27550194, 27550195, hyderabad@schandpublishing.com
Jaipur	: Ph: 2219175, 2219176, jaipur@schandpublishing.com
Jalandhar	: Ph: 2401630, 5000630, jalandhar@schandpublishing.com
Kochi	: Ph: 2378740, 2378207-08, cochin@schandpublishing.com
Kolkata	: Ph: 22367459, 22373914, kolkata@schandpublishing.com
Lucknow	: Ph: 4026791, 4065646, lucknow@schandpublishing.com
Mumbai	: Ph: 22690881, 22610885, mumbai@schandpublishing.com
Nagpur	: Ph: 6451311, 2720523, 2777666, nagpur@schandpublishing.com
Patna	: Ph: 2300489, 2302100, patna@schandpublishing.com
Pune	: Ph: 64017298, pune@schandpublishing.com
Raipur	: Ph: 2443142, raipur@schandpublishing.com (Marketing Office)
Ranchi	: Ph: 2361178, ranchi@schandpublishing.com
Siliguri	: Ph: 2520750, siliguri@schandpublishing.com (Marketing Office)
Visakhapatnam	: Ph: 2782609, visakhapatnam@schandpublishing.com (Marketing Office)

© 1989, Dr. R.S. Aggarwal

All rights reserved. No part of this publication may be reproduced or copied in any material form (including photocopying or storing it in any medium in form of graphics, electronic or mechanical means and whether or not transient or incidental to some other use of this publication) without written permission of the publisher. Any breach of this will entail legal action and prosecution without further notice.

Jurisdiction : All disputes with respect to this publication shall be subject to the jurisdiction of the Courts, Tribunals and Forums of New Delhi, India only.

S. CHAND'S Seal of Trust

In our endeavour to protect you against counterfeit/fake books, we have pasted a holographic film over the cover of this book. The cover of this book. The cover of this book is the unique 3D multi-level, multi-colour effects of our logo from different angles when tilted or properly illuminated under a single source of light, such as 2D/3D depth effect, kinetic effect, gradient effect, trailing effect, emboss effect, glitter effect, randomly sparkling tiny dots, etc.

A fake hologram does not display all these effects.

First Edition 1989

Subsequent Editions and Reprints 1995, 1996 (Twice), 97, 98, 99, 2000, 2001, 2002, 2003, 2004, 2005 (Twice), 2006 (Twice), 2007 (Twice), 2008 (Twice), 2009 (Thrice), 2010 (Twice), 2011 (Thrice), 2012, 2013 (Twice), 2014 (Twice), 2015 (Twice), 2016 (Twice) Revised and Enlarged Edition 2017; Reprint 2017

ISBN: 978-93-525-3402-9

PRINTED IN INDIA

By Vikas Publishing House Pvt. Ltd., Plot 20/4, Site-IV, Industrial Area Sahibabad, Ghaziabad-201010 and Published by S Chand And Company Limited, 7361, Ram Nagar, New Delhi-110 055.

Preface to the Revised Edition

Ever since its release in 1989, *Quantitative Aptitude* has come to acquire a special place of respect and acceptance among students and aspirants appearing for a wide gamut of competitive exams. As a front-runner and a first choice, the book has solidly stood by the students and helped them fulfil their dreams by providing a strong understanding of the subject and even more rigorous practice of it.

Now, more than a quarter of a century later, with the ever changing environment of examinations, the book too reinvents itself while being resolute to its core concept of providing the best content with easily understandable solutions.

Following are the features of this revised and enlarged edition:

- **1. Comprehensive:** With more than 5500 questions (supported with answers and solutions—a hallmark of Quantitative Aptitude) the book is more comprehensive than ever before.
- **2. Easy to follow:** Chapters begin with easy-to-grasp theory complemented by formulas and solved examples. They are followed by a wide-ranging number of questions for practice.
- **3.** Latest: With questions (memory based) from examinations up till year 2016, the book captures the latest examination patterns as well as questions for practice.

With the above enhancements to an already robust book, we fulfil a long-standing demand of the readers to bring out a revised and updated edition, and sincerely hope they benefit immensely from it.

Constructive suggestions for improvement of this book will be highly appreciated and welcomed.

All the Best!

Salient Features of the Book

- A whole lot of objective-type questions, with their solutions by short-cut methods.
- A full coverage of every topic via fully solved examples given at the beginning of each chapter.
- A separate exercise on Data-Sufficiency-Type Questions given in each topic, along with explanatory solutions.
- A more enriched section on Data Interpretation.
- Questions from latest years' examination papers (on memory basis) have been incorporated.

Contents

SEC	TION-I : ARITHMETICAL A	ABILITY 1–883
1.	Number System	3–50
2.	H.C.F. and L.C.M. of Numbers	51–68
3.	Decimal Fractions	69–94
4.	Simplification	95–179
5.	Square Roots and Cube Roots	180–205
6.	Average	206–239
7.	Problems on Numbers	240–263
8.	Problems on Ages	264–277
9.	Surds and Indices	278–296
10.	Logarithms	297–307
11.	Percentage	308-373
12.	Profit and Loss	374–425
13.	Ratio and Proportion	426–475
14.	Partnership	476–492
15.	Chain Rule	493–509
16.	Pipes and Cisterns	510-525
17.	Time and Work	526–561
18.	Time and Distance	562–599
19.	Boats and Streams	600–611
20.	Problems on Trains	612–632

21.	Alligation or Mixture	633–640
22.	Simple Interest	641–662
23.	Compound Interest	663–687
24.	Area	688–765
25.	Volume and Surface Area	766–813
26.	Races and Games of Skill	814-818
27.	Calendar	819-822
28.	Clocks	823-833
29.	Stocks and Shares	834-840
30.	Permutations and Combinations	841-849
31.	Probability	850-860
32.	True Discount	861-865
33.	Banker's Discount	866–869
34.	Heights and Distances	870-876
35.	Odd Man Out and Series	877-883

SECTION–II : DATA INTERPRETATION 885–952

36.	Tabulation	887–904
37.	Bar Graphs	905–922
38.	Pie Chart	923–936
39.	Line Graphs	937–952

Section-I

Arithmetical Ability

1

Number System

FUNDAMENTAL CONCEPTS

I. Numbers

In Hindu-Arabic system, we have ten digits, namely 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. *A number is denoted by a group of digits, called numeral.*

For denoting a numeral, we use the place-value chart, given below.

	Ten- Crores	Crores	Ten- Lakhs	Lakhs	Ten- Thousands	Thousands	Hundreds	Tens	Ones
(<i>i</i>)				5	2	8	6	7	9
(ii)			4	3	8	0	9	6	7
(iii)		3	5	2	1	8	0	0	9
(iv)	5	6	1	3	0	7	0	9	0

The four numerals shown above may be written in words as:

- (i) Five lakh twenty-eight thousand six hundred seventy-nine
- (ii) Forty-three lakh eighty thousand nine hundred sixty-seven
- (iii) Three crore fifty-two lakh eighteen thousand nine
- (iv) Fifty-six crore thirteen lakh seven thousand ninety
- Now, suppose we are given the following four numerals in words:
- (*i*) Nine crore four lakh six thousand two
- (ii) Twelve crore seven lakh nine thousand two hundred seven
- (iii) Four lakh four thousand forty
- (iv) Twenty-one crore sixty lakh five thousand fourteen

Then, using the place-value chart, these may be written in figures as under:

	Ten-	Crores	Ten-	Lakhs	Ten-	Thousands	Hundreds	Tens	Ones
	Crores		Lakhs		Thousands				
(<i>i</i>)		9	0	4	0	6	0	0	2
(ii)	1	2	0	7	0	9	2	0	7
(<i>iii</i>)				4	0	4	0	4	0
<i>(iv)</i>	2	1	6	0	0	5	0	1	4

II. Face value and Place value (or Local Value) of a Digit in a Numeral

- (*i*) The face value of a digit in a numeral is its own value, at whatever place it may be.
- **Ex.** In the numeral 6872, the face value of 2 is 2, the face value of 7 is 7, the face value of 8 is 8 and the face value of 6 is 6.

(*ii*) In a given numeral:

Place value of ones digit = (ones digit) \times 1,

Place value of tens digit = (tens digit) \times 10,

Place value of hundreds digit = (hundreds digit) \times 100 and so on.

- Ex. In the numeral 70984, we have
 - Place value of $4 = (4 \times 1) = 4$,
 - Place value of $8 = (8 \times 10) = 80$,
 - Place value of $9 = (9 \times 100) = 900$,
 - Place value of $7 = (7 \times 10000) = 70000$.

Note: Place value of 0 in a given numeral is 0, at whatever place it may be.

III. Various Types of Numbers

1. Natural Numbers: Counting numbers are called natural numbers.

Thus, 1, 2, 3, 4, are all natural numbers.

- **2.** Whole Numbers: All counting numbers, together with 0, form the set of whole numbers.
- Thus, 0, 1, 2, 3, 4, are all whole numbers.

- **3.** Integers: All counting numbers, zero and negatives of counting numbers, form the set of integers. Thus,, - 3, - 2, - 1, 0, 1, 2, 3, are all integers. Set of positive integers = {1, 2, 3, 4, 5, 6,} Set of negative integers = $\{-1, -2, -3, -4, -5, -6, \dots\}$ Set of all non-negative integers = {0, 1, 2, 3, 4, 5,}
 - 4. Even Numbers: A counting number divisible by 2 is called an even number. Thus, 0, 2, 4, 6, 8, 10, 12, etc. are all even numbers.
 - **5.** Odd Numbers: A counting number not divisible by 2 is called an odd number. Thus, 1, 3, 5, 7, 9, 11, 13, etc. are all odd numbers.
 - 6. Prime Numbers: A counting number is called a prime number if it has exactly two factors, namely itself and 1. **Ex.** All prime numbers less than 100 are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
 - 7. Composite Numbers: All counting numbers, which are not prime, are called composite numbers. A composite number has more than 2 factors.
 - 8. Perfect Numbers: A number, the sum of whose factors (except the number itself), is equal to the number, is called a perfect number, e.g. 6, 28, 496 The factors of 6 are 1, 2, 3 and 6. And, 1 + 2 + 3 = 6.

The factors of 28 are 1, 2, 4, 7, 14 and 28. And, 1 + 2 + 4 + 7 + 14 = 28.

- 9. Co-primes (or Relative Primes): Two numbers whose H.C.F. is 1 are called co-prime numbers, **Ex.** (2, 3), (8, 9) are pairs of co-primes.
- 10. Twin Primes: Two prime numbers whose difference is 2 are called twin-primes, **Ex.** (3, 5), (5, 7), (11, 13) are pairs of twin-primes.

11. Rational Numbers: Numbers which can be expressed in the form $\frac{p}{a}$, where p and q are integers and $q \neq 0$, are

called rational numbers.

Ex. $\frac{1}{8}, \frac{-8}{11}, 0, 6, 5\frac{2}{3}$ etc.

12. Irrational Numbers: Numbers which when expressed in decimal would be in non-terminating and non-repeating form, are called irrational numbers.

Ex. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$, π , *e*, 0.231764735.....

IV. Important Facts:

- 1. All natural numbers are whole numbers.
- 2. All whole numbers are not natural numbers. 0 is a whole number which is not a natural number.
- 3. Even number + Even number = Even number Odd number + Odd number = Even number Even number + Odd number = Odd number Even number – Even number = Even number Odd number – Odd number = Even number Even number – Odd number = Odd number Odd number – Even number = Odd number Even number \times Even number = Even number Odd number \times Odd number = Odd number Even number \times Odd number = Even number
- 4. The smallest prime number is 2.
- 5. The only even prime number is 2.
- 6. The first odd prime number is 3.
- 7. 1 is a unique number neither prime nor composite.
- 8. The least composite number is 4.
- 9. The least odd composite number is 9.

10. Test for a Number to be Prime:

Let *p* be a given number and let *n* be the smallest counting number such that $n^2 \ge p$.

Now, test whether *p* is divisible by any of the prime numbers less than or equal to *n*. If yes, then *p* is not prime otherwise, *p* is prime. -

_					
	Ex.	Test, which of the following are prime numb	vers?		
	(i)	137 (<i>ii</i>) 173	(<i>iii</i>) 319	(<i>iv</i>) 437	(v) 811
Sol.	<i>(i)</i>	We know that $(12)^2 > 137$.			
		Prime numbers less than 12 are 2, 3, 5, 7, 11			
		Clearly, none of them divides 137.			
		∴ 137 is a prime number.			
	(ii)	We know that $(14)^2 > 173$.			
	()	Prime numbers less than 14 are 2, 3, 5, 7, 11	. 13.		
		Clearly, none of them divides 173.	, 101		
		\therefore 173 is a prime number.			
	(iii	We know that $(18)^2 > 319$.			
	(111)	Prime numbers less than 18 are 2, 3, 5, 7, 11	13.17		
		Out of these prime numbers, 11 divides 319			
		\therefore 319 is not a prime number.	completely.		
	(171)	We know that $(21)^2 > 437$.			
	(10)	Prime numbers less than 21 are 2, 3, 5, 7, 11	13 17 19		
		Clearly, 437 is divisible by 19.	, 10, 17, 17.		
		\therefore 437 is not a prime number.			
	(71)	We know that $(30)^2 > 811$.			
	(U)	Prime numbers less than 30 are 2, 3, 5, 7, 11	13 17 10 3	2 20	
			, 13, 17, 19, 2	.0, 29.	
		Clearly, none of these numbers divides 811.			
		\therefore 811 is a prime number.			
V. I	mp	ortant Formulae:			
	(1	$(a + b)^2 = a^2 + b^2 + 2ab$	<i>(ii)</i>	$(a - b)^2 = a^2 + b^2 - 2ab$	
	(iii	$(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$	(iv)	$(a + b)^2 - (a - b)^2 = 4ab$	
		$(a + b)^3 = a^3 + b^3 + 3ab (a + b)$	(vi)	$(a - b)^3 = a^3 - b^3 - 3ab (a - b)$	
	(vii	$a^2 - b^2 = (a + b)(a - b)$		$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + b^2)^2$	bc + ca)
	(ix	$a^{3} + b^{3} = (a + b)(a^{2} + b^{2} - ab)$	(x)	$a^3 - b^3 = (a - b)(a^2 + b^2 + ab)$,
) $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2)$	$\frac{2}{2} - ab - bc - bc$	ca)	
) If $a + b + c = 0$, then $a^3 + b^3 + c^3 = 3abc$,	
	(
		TESTS OF	DIVISIBILI	тү	
1	. I	Divisibility By 2:]	
		number is divisible by 2 if its unit digit is any o	f 0, 2, 4, 6, 8,		
		\sim 58694 is divisible by 2, while 86945 is not			
2		ivisibility By 3:			
_		number is divisible by 3 only when the sum of it	s dioits is div	isihle hu 3	
		(<i>i</i>) In the number 695421, the sum of digi			
	L.	\therefore (<i>i</i>) If the number 0.5421, the sum of angle \therefore 695421 is divisible by 3.	13 - 27, which	It is divisible by 5.	
			$t_{0} = 25$ which	h is not divisible by 2	
		(<i>ii</i>) In the number 948653, the sum of digit (48652) is not divisible by 2	15 = 55, which	It is not divisible by 5.	
	_	\therefore 948653 is not divisible by 3.			
3		ivisibility By 9:	1,		
		number is divisible by 9 only when the sum of it	0		
	E	(i) In the number 246591, the sum of digi	ts = 27, whic	h is divisible by 9.	
		\therefore 246591 is divisible by 9.			
		(<i>ii</i>) In the number 734519, the sum of digi	ts = 29, whic	h is not divisible by 9.	
		\therefore 734519 is not divisible by 9.			
4	. D	ivisibility By 4:			
		number is divisible by 4 if the number formed by	its last two d	ligits is divisible by 4.	
		(<i>i</i>) 6879376 is divisible by 4, since 76 is di		0	
		(ii) 406138 is not divisible by 4 since 28 is		by 1	

(*ii*) 496138 is not divisible by 4, since 38 is not divisible by 4.

5. Divisibility By 8: A number is divisible by 8 if the number formed by its last three digits is divisible by 8.

5

6

Ъ **Ex.** (*i*) In the number 16789352, the number formed by last 3 digits, namely 352 is divisible by 8. : 16789352 is divisible by 8. (ii) In the number 576484, the number formed by last 3 digits, namely 484 is not divisible by 8. \therefore 576484 is not divisible by 8. 6. Divisibility By 10: A number is divisible by 10 only when its unit digit is 0. Ex. (i) 7849320 is divisible by 10, since its unit digit is 0. (ii) 678405 is not divisible by 10, since its unit digit is not 0. 7. Divisibility By 5: A number is divisible by 5 only when its unit digit is 0 or 5. Ex. (i) Each of the numbers 76895 and 68790 is divisible by 5. 8. Divisibility By 11: A number is divisible by 11 if the difference between the sum of its digits at odd places and the sum of its digits at even places is either 0 or a number divisible by 11. Ex. (i) Consider the number 29435417. (Sum of its digits at odd places) – (Sum of its digits at even places) = (7 + 4 + 3 + 9) - (1 + 5 + 4 + 2) = (23 - 12) = 11, which is divisible by 11. : 29435417 is divisible by 11. (ii) Consider the number 57463822. (Sum of its digits at odd places) - (Sum of its digits at even places) = (2 + 8 + 6 + 7) - (2 + 3 + 4 + 5) = (23 - 14) = 9, which is not divisible by 11. ∴ 57463822 is not divisible by 11. 9. Divisibility By 25: A number is divisible by 25 if the number formed by its last two digits is either 00 or divisible by 25. **Ex.** (*i*) In the number 63875, the number formed by last 2 digits, namely 75 is divisible by 25. \therefore 63875 is divisible by 25. (*ii*) In the number 96445, the number formed by last 2 digits, namely 45 is not divisible by 25. \therefore 96445 is not divisible by 25. 10. Divisibility By 7 or 13: Divide the number into groups of 3 digits (starting from right) and find the difference between the sum of the numbers in odd and even places. If the difference is 0 or divisible by 7 or 13 (as the case may be), it is divisible by 7 or 13. **Ex.** (i) $4537792 \rightarrow 4 / 537 / 792$ (792 + 4) - 537 = 259, which is divisible by 7 but not by 13. \therefore 4537792 is divisible by 7 and not by 13. (*ii*) $579488 \rightarrow 579 / 488$ 579 - 488 = 91, which is divisible by both 7 and 13. \therefore 579488 is divisible by both 7 and 13. 11. Divisibility By 16: A number is divisible by 16, if the number formed by its last 4 digits is divisible by 16. **Ex.** (i) In the number 463776, the number formed by last 4 digits, namely 3776, is divisible by 16. \therefore 463776 is divisible by 16. (ii) In the number 895684, the number formed by last 4 digits, namely 5684, is not divisible by 16. \therefore 895684 is not divisible by 16. **12. Divisibility By 6:** A number is divisible by 6, if it is divisible by both 2 and 3. 13. Divisibility By 12: A number is divisible by 12, if it is divisible by both 3 and 4. **14.** Divisibility By 15: A number is divisible by 15, if it is divisible by both 3 and 5. 15. Divisibility By 18: A number is divisible by 18, if it is divisible by both 2 and 9. **16.** Divisibility By 14: A number is divisible by 14, if it is divisible by both 2 and 7. 17. Divisibility By 24: A given number is divisible by 24, if it is divisible by both 3 and 8. **18.** Divisibility By 40: A given number is divisible by 40, if it is divisible by both 5 and 8. **19.** Divisibility By 80: A given number is divisible by 80, if it is divisible by both 5 and 16.

Note: If a number is divisible by p as well as q, where p and q are co-primes, then the given number is divisible by pq.

If p and q are not co-primes, then the given number need not be divisible by pq, even when it is divisible by both p and q.

Ex. 36 is divisible by both 4 and 6, but it is not divisible by $(4 \times 6) = 24$, since 4 and 6 are not co-primes.

VI. Factorial of a Number

Let n be a positive integer.

Then, the continued product of first n natural numbers is called factorial n, denoted by n ! or |n|.

Thus, n ! = n (n - 1) (n - 2) 3.2.1 Ex. $5 ! = 5 \times 4 \times 3 \times 2 \times 1 = 120$.

Note: 0 ! = 1

VII. Modulus of a Number

 $|x| = \begin{cases} x, & \text{when } x \ge 0\\ -x, & \text{when } x < 0 \end{cases}$ Ex. |-5| = 5, |4| = 4, |-1| = 1, etc.

VIII. Greatest Integral Value

The greatest integral value of an integer x, denoted by [x], is defined as the greatest integer not exceeding x.

Ex. [1.35] = 1,
$$\left\lfloor \frac{11}{4} \right\rfloor = \left\lfloor 2\frac{3}{4} \right\rfloor = 2$$
, etc

IX. Multiplication BY Short cut Methods

1. Multiplication By Distributive Law:

(i) $a \times (b + c) = a \times b + a \times c$ (ii) $a \times (b - c) = a \times b - a \times c$

Ex. (*i*) $567958 \times 99999 = 567958 \times (100000 - 1) = 567958 \times 100000 - 567958 \times 1$ = (56795800000) - 567958) = 56795232042.

(*ii*) $978 \times 184 + 978 \times 816 = 978 \times (184 + 816) = 978 \times 1000 = 978000$.

2. Multiplication of a Number By 5^{*n*}: Put *n* zeros to the right of the multiplicand and divide the number so formed by 2^{*n*}.

Ex. 975436 × 625 = 975436 × 5⁴ = $\frac{9754360000}{16}$ = 609647500.

X. Division Algorithm or Euclidean Algorithm

If we divide a given number by another number, then:

Dividend = (Divisor × Quotient) + Remainder

Important Facts:

- **1.** (*i*) $(x^n a^n)$ is divisible by (x a) for all values of *n*.
 - (*ii*) $(x^n a^n)$ is divisible by (x + a) for all even values of *n*.
 - (*iii*) $(x^n + a^n)$ is divisible by (x + a) for all odd values of *n*.

2. To find the highest power of a prime number p in n !

Highest power of
$$p$$
 in $n! = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots + \left\lfloor \frac{n}{p^r} \right\rfloor$, where $p^r \le n < p^{r+1}$

SOLVED EXAMPLES

Ex. 1. Simplify: (i) 8888 + 888 + 88 + 8

(ii) 715632 - 631104 - 9874 - 999

Sol.	(<i>i</i>) 8888	(<i>ii</i>) Given $exp = 7156$	32 - (631104 + 9874 + 99)
	888	= 7156	632 - 641077 = 74555.
	88	631104	715632
	+ 8	9874	- 641077
	9872	+ 99	74555
		641077	

(LIC, ADO, 2007)

Ex. 2. What value will replace the question mark in each of the following questions? (i)? - 1936248 = 1635773(*ii*) 9587 -? = 7429 - 4358**Sol.** (*i*) Let x - 1936248 = 1635773. Then, x = 1635773 + 1936248 = 3572021. (*ii*) Let 9587 - x = 7429 - 4358. Then, $9587 - x = 3071 \implies x = 9587 - 3071 = 6516$. (1)(2)**Ex. 3.** What could be the maximum value of Q in the following equation? 5 P 9 5P9 + 3R7 + 2Q8 = 11143 R 7 Sol. We may analyse the given equation as shown: 20.8Clearly, 2 + P + R + Q = 11. 1 1 4 So, the maximum value of *Q* can be (11 - 2), i.e. 9 (when P = 0, R = 0). **Ex. 4.** Simplify: (i) 5793405 × 9999 (ii) 839478 × 625 **Sol.** (*i*) $5793405 \times 9999 = 5793405 \times (10000 - 1) = 57934050000 - 5793405 = 57928256595$. (*ii*) $839478 \times 625 = 839478 \times 5^4 = 839478 \times \left(\frac{10}{2}\right)^4 = \frac{839478 \times 10^4}{2^4} = \frac{8394780000}{16} = 524673750.$ Ex. 5. Evaluate: (i) 986 × 137 + 986 × 863 (ii) 983 × 207 – 983 × 107 **Sol.** (*i*) $986 \times 137 + 986 \times 863 = 986 \times (137 + 863) = 986 \times 1000 = 986000$. (*ii*) $983 \times 207 - 983 \times 107 = 983 \times (207 - 107) = 983 \times 100 = 98300$. **Ex. 6.** Simplify: (i) 1605 × 1605 (*ii*) 1398 × 1398 **Sol.** (*i*) $1605 \times 1605 = (1605)^2 = (1600 + 5)^2 = (1600)^2 + 5^2 + 2 \times 1600 \times 5$ = 2560000 + 25 + 16000 = 2576025.(*ii*) $1398 \times 1398 = (1398)^2 = (1400 - 2)^2 = (1400)^2 + 2^2 - 2 \times 1400 \times 2$ = 1960000 + 4 - 5600 = 1954404.Ex. 7. Evaluate: (i) 475 × 475 + 125 × 125 (*ii*) $796 \times 796 - 204 \times 204$ **Sol.** (*i*) We have $(a^2 + b^2) = \frac{1}{2}[(a+b)^2 + (a-b)^2]$ $\therefore (475)^2 + (125)^2 = \frac{1}{2} \cdot [(475 + 125)^2 + (475 - 125)^2] = \frac{1}{2} \cdot [(600)^2 + (350)^2]$ $=\frac{1}{2}[360000 + 122500] = \frac{1}{2} \times 482500 = 241250.$ (*ii*) $796 \times 796 - 204 \times 204 = (796)^2 - (204)^2 = (796 + 204) (796 - 204)$ $[:: (a - b)^2 = (a + b)(a - b)]$ $= (1000 \times 592) = 592000.$ **Ex. 8.** Simplify: (i) $(387 \times 387 + 113 \times 113 + 2 \times 387 \times 113)$ (*ii*) $(87 \times 87 + 61 \times 61 - 2 \times 87 \times 61)$ **Sol.** (*i*) Given Exp. = $(387)^2 + (113)^2 + 2 \times 387 \times 113 = (a^2 + b^2 + 2ab)$, where a = 387 and b = 113 $= (a + b)^2 = (387 + 113)^2 = (500)^2 = 250000.$ (*ii*) Given Exp. = $(87)^2 + (61)^2 - 2 \times 87 \times 61 = (a^2 + b^2 - 2ab)$, where a = 87 and b = 61 $= (a - b)^2 = (87 - 61)^2 = (26)^2 = (20 + 6)^2 = (20)^2 + 6^2 + 2 \times 20 \times 6 = (400 + 36 + 240)$ = (436 + 240) = 676.**Ex. 9.** Find the square root of $4a^2 + b^2 + c^2 + 4ab - 2bc - 4ac$. (Campus Recruitment, 2010) Sol. $\sqrt{4a^2 + b^2 + c^2 + 4ab - 2bc - 4ac} = \sqrt{(2a)^2 + b^2 + (-c)^2 + 2 \times 2a \times b + 2 \times b \times (-c) + 2 \times (2a) \times (-c)}$ $=\sqrt{(2a+b-c)^2} = (2a+b-c).$

Ex. 10. A is counting the numbers from 1 to 31 and B from 31 to 1. A is counting the odd numbers only. The speed of both is the same. What will be the number which will be pronounced by A and B together?

(Campus Recruitment, 2010)

Sol. The numbers pronounced by *A* and *B* in order are:

A	A	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31
E	3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Clearly both A and B pronounce the number 21 together.

 $(i) \ \frac{789 \times 789 \times 789 + 211 \times 211 \times 211}{789 \times 789 - 789 \times 211 + 211 \times 211}$ $(ii) \frac{658 \times 658 \times 658 - 328 \times 328 \times 328}{658 \times 658 + 658 \times 328 + 328 \times 328}$ **Ex.** 11. Simplify: **Sol.** (*i*) Given exp. = $\frac{(789)^3 + (211)^3}{(789)^2 - (789 \times 211) + (211)^2} = \frac{a^3 + b^3}{a^2 - ab + b^2}$, (where a = 789 and b = 211) = (a + b) = (789 + 211) = 1000.(*ii*) Given exp. = $\frac{(658)^3 - (328)^3}{(658)^2 + (658 \times 328) + (328)^2} = \frac{a^3 - b^3}{a^2 + ab + b^2}$, (where a = 658 and b = 328) = (a - b) = (658 - 328) = 330.Ex. 12. Simplify: $\frac{(893 + 786)^2 - (893 - 786)^2}{(893 \times 786)}$ **Sol.** Given exp. = $\frac{(a+b)^2 - (a-b)^2}{ab}$ (where a = 893, b = 786) = $\frac{4ab}{ab} = 4$. Ex. 13. Which of the following are prime numbers? *(iii)* 391 (*i*) 241 *(ii)* 337 (*iv*) 571 **Sol.** (*i*) Clearly, $16 > \sqrt{241}$. Prime numbers less than 16 are 2, 3, 5, 7, 11, 13. 241 is not divisible by any of them. \therefore 241 is a prime number. (*ii*) Clearly, $19 > \sqrt{337}$. Prime numbers less than 19 are 2, 3, 5, 7, 11, 13, 17. 337 is not divisible by any one of them. \therefore 337 is a prime number. (*iii*) Clearly, $20 > \sqrt{391}$. Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. We find that 391 is divisible by 17. \therefore 391 is not a prime number. (*iv*) Clearly, $24 > \sqrt{571}$. Prime numbers less than 24 are 2, 3, 5, 7, 11, 13, 17, 19, 23. 571 is not divisible by any one of them. :. 571 is a prime number. **Ex. 14.** If Δ stands for the operation 'adding first number to twice the second number', then find the value of $(1 \Delta 2) \Delta 3.$ **Sol.** $(1 \ \Delta \ 2) \ \Delta \ 3 = (1 + 2 \times 2) \ \Delta \ 3 = 5 \ \Delta \ 3 = 5 + 2 \times 3 = 5 + 6 = 11.$ **Ex. 15.** Given that $1^2 + 2^2 + 3^2 + \dots + 10^2 = 385$, then find the value of $2^2 + 4^2 + 6^2 + \dots + 20^2$. **Sol.** $2^2 + 4^2 + 6^2 + \dots + 20^2 = 2^2 (1^2 + 2^2 + 3^2 + \dots + 10^2) = 2^2 \times 385 = 4 \times 385 = 1540.$ Ex.16. Which of the following numbers is divisible by 3? (i) 541326 (ii) 5967013 **Sol.** (*i*) Sum of digits in 541326 = (5 + 4 + 1 + 3 + 2 + 6) = 21, which is divisible by 3. Hence, 541326 is divisible by 3. (*ii*) Sum of digits in 5967013 = (5 + 9 + 6 + 7 + 0 + 1 + 3) = 31, which is not divisible by 3. Hence, 5967013 is not divisible by 3. **Ex.** 17. What least value must be assigned to * so that the number 197*5462 is divisible by 9? **Sol.** Let the missing digit be *x*. Sum of digits = (1 + 9 + 7 + x + 5 + 4 + 6 + 2) = (34 + x). For (34 + x) to be divisible by 9, x must be replaced by 2. Hence, the digit in place of * must be 2. Ex. 18. Which of the following numbers is divisible by 4? (*i*) 67920594 (ii) 618703572 Sol. (i) The number formed by the last two digits in the given number is 94, which is not divisible by 4. Hence, 67920594 is not divisible by 4. (*ii*) The number formed by the last two digits in the given number is 72, which is divisible by 4.

Hence, 618703572 is divisible by 4.

- Ex. 19. Which digits should come in place of * and \$ if the number 62684*\$ is divisible by both 8 and 5?
- **Sol.** Since the given number is divisible by 5, so 0 or 5 must come in place of \$. But, a number ending with 5 is never divisible by 8. So, 0 will replace \$.

Now, the number formed by the last three digits is 4*0, which becomes divisible by 8, if * is replaced by 4. Hence, digits in place of * and \$ are 4 and 0 respectively.

- Ex. 20. Show that 4832718 is divisible by 11.
- **Sol.** (Sum of digits at odd places) (Sum of digits at even places) = (8 + 7 + 3 + 4) (1 + 2 + 8) = 11, which is divisible by 11.

Hence, 4832718 is divisible by 11.

- Ex. 21. Is 52563744 divisible by 24?
 - **Sol.** $24 = 3 \times 8$, where 3 and 8 are co-primes.

The sum of the digits in the given number is 36, which is divisible by 3. So, the given number is divisible by 3.

The number formed by the last 3 digits of the given number is 744, which is divisible by 8. So, the given number is divisible by 8. Thus, the given number is divisible by both 3 and 8, where 3 and 8 are co-primes. So, it is divisible by 3×8 , i.e. 24.

- Ex. 22. What are the values of M and N respectively if M39048458N is divisible by both 8 and 11, where M and N are single-digit integers?
 - **Sol.** Since the given number is divisible by 8, it is obvious that the number formed by the last three digits, i.e. 58N is divisible by 8, which is possible only when N = 4.

Now, (sum of digits at even places) - (sum of digits at odd places)

$$= (8 + 4 + 4 + 9 + M) - (4 + 5 + 8 + 0 + 3)$$

= (25 + M) - 20 = M + 5, which must be divisible by 11.

So, M = 6.

Hence, M = 6, N = 4.

- Ex. 23. Find the number of digits in the smallest number which is made up of digits 1 and 0 only and is divisible by 225.
 - **Sol.** $225 = 9 \times 25$, where 9 and 25 are co-primes.

Clearly, a number is divisible by 225 if it is divisible by both 9 and 25.

Now, a number is divisible by 9 if the sum of its digits is divisible by 9 and a number is divisible by 25 if the number formed by the last two digits is divisible by 25.

 \therefore The smallest number which is made up of digits 1 and 0 and divisible by 225 = 1111111100.

Hence, number of digits = 11.

Ex. 24. If the number 3422213pq is divisible by 99, find the missing digits p and q.

Sol. $99 = 9 \times 11$, where 9 and 11 are co-primes.

Clearly, a number is divisible by 99 if it is divisible by both 9 and 11.

Since the number is divisible by 9, we have: (3 + 4 + 2 + 2 + 2 + 1 + 3 + p + q) = a multiple of 9 $\Rightarrow 17 + (p + q) = 18 \text{ or } 27$ $\Rightarrow p + q = 1$ p + q = 10...(*ii*) ...(*i*) or Since the number is divisible by 11, we have: (q + 3 + 2 + 2 + 3) - (p + 1 + 2 + 4) = 0 or a multiple of 11 $\Rightarrow (10 + q) - (7 + p) = 0 \text{ or } 11$ \Rightarrow 3 + (q - p) = 0 or 11 $\Rightarrow q - p = -3$ or q - p = 8...(*iii*) q - p = 8 $\Rightarrow p - q = 3$...(*iv*) or Clearly, if (i) holds, then neither (iii) nor (iv) holds. So, (i) does not hold. Also, solving (*ii*) and (*iii*) together, we get: p = 6.5, which is not possible. Solving (*ii*) and (*iv*) together, we get: p = 1, q = 9.

Ex. 25. x is a positive integer such that $x^2 + 12$ is exactly divisible by x. Find all the possible values of x. $x^2 + 12$ x^2 12 12

Sol.
$$\frac{x^2 + 12}{2} = \frac{x}{2} + \frac{12}{2} = x + \frac{12}{2}$$

x x x x Clearly, 12 must be completely divisible by *x*. So, the possible values of *x* are 1, 2, 3, 4, 6 and 12.

Ex. 26. Find the smallest number to be added to 1000 so that 45 divides the sum exact Sol. On dividing 1000 her 45 and got 10 so number dor.	tly.	
Sol. On dividing 1000 by 45, we get 10 as remainder.		
\therefore Number to be added = $(45 - 10) = 35$.	isible by 172	
Ex. 27. What least number must be subtracted from 2000 to get a number exactly diverse. Sol. On dividing 2000 by 17, we get 11 as remainder.	isible by 17.	
\therefore Required number to be subtracted = 11.		
Ex. 28. Find the number which is nearest to 3105 and is exactly divisible by 21.		
Sol. On dividing 3105 by 21, we get 18 as remainder.		
\therefore Number to be added to $3105 = (21 - 18) = 3.$		
Hence, required number = $3105 + 3 = 3108$.		
Ex. 29. Find the smallest number of five digits which is exactly divisible by 476.		
Sol. Smallest number of 5 digits = 10000 .		
On dividing 10000 by 476, we get 4 as remainder.		
: Number to be added = $(476 - 4) = 472$.		
Hence, required number = 10472 .		
Ex. 30. Find the greatest number of five digits which is exactly divisible by 47.		42735
Sol. Greatest number of 5 digits is 99999.		13)555555(
On dividing 99999 by 47, we get 30 as remainder. \therefore Required number = (99999 – 30) = 99969.		<u>52</u> 35
Ex. 31. When a certain number is multiplied by 13, the product consists entirely of fi	ves Find the	26
smallest such number.		$95 \\ 91 \\ 45 \\ 39$
Sol. Clearly, we keep on dividing 55555 by 13 till we get 0 as remainder.		$\frac{43}{39}$
\therefore Required number = 42735.		
Ex. 32. When a certain number is multiplied by 18, the product consists entirely of 2's.	What is the	$\frac{65}{x}$
minimum number of 2's in the product?		
Sol. We keep on dividing 22222 by 18 till we get 0 as remainder.	<u>12345679</u> 18)222222222 (
Ex. 33. Find the smallest number which when multiplied by 9 gives the product	$\frac{18}{42}$	
as 1 followed by a certain number of 7s only. Sol. The least number having 1 followed by 7s, which is divisible by 9, is	$\frac{42}{36}$	
177777, as $1 + 7 + 7 + 7 + 7 + 7 = 36$ (which is divisible by 9).	$\frac{52}{54}$	
\therefore Required number = 177777 ÷ 9 = 19753.	82 72	
Ex. 34. What is the unit's digit in the product?	$\frac{72}{102}$	
81 × 82 × 83 ×	90 122 108	
Sol. Required unit's digit = Unit's digit in the product $1 \times 2 \times 3 \times \dots \times 9 = 0$	100	
$[\because 2 \times 5 = 10]$	142 126	
Ex. 35. Find the unit's digit in the product $(2467)^{153} \times (341)^{72}$.	162	-
Sol. Clearly, unit's digit in the given product = unit's digit in $7^{153} \times 1^{72}$.	<u>162</u>	_
Now, 7 ⁴ gives unit digit 1.		—
\therefore 7 ¹⁵² gives unit digit 1.		
\therefore 7 ¹⁵³ gives unit digit (1 × 7) = 7. Also, 1 ⁷² gives unit digit 1.		
Hence, unit digit in the product = $(7 \times 1) = 7$.		
Ex. 36. Find the unit's digit in $(264)^{102} + (264)^{103}$.		
Sol. Required unit's digit = unit's digit in $(4)^{102} + (4)^{103}$.		
Now, 4^2 gives unit digit 6.		
\therefore (4) ¹⁰² gives unit digit 6.		
(4) ¹⁰³ gives unit digit of the product (6 × 4) i.e., 4.		
Hence, unit's digit in $(264)^{102} + (264)^{103} =$ unit's digit in $(6 + 4) = 0$.		
Ex. 37. Find the total number of prime factors in the expression $(4)^{11} \times (7)^5 \times (11)^2$.		
Sol. $(4)^{11} \times (7)^5 \times (11)^2 = (2 \times 2)^{11} \times (7)^5 \times (11)^2 = 2^{11} \times 2^{11} \times 7^5 \times 11^2 = 2^{22} \times 11^2 \times 11^$	12.	
\therefore Total number of prime factors = $(22 + 5 + 2) = 29$.		

11

Ex. 38. What is the number of zeros at the end of the product of the numbers from 1 to 100?

Sol. Let $N = 1 \times 2 \times 3 \times \dots \times 100$.

Clearly, only the multiples of 2 and 5 yield zeros on multiplication.

In the given product, the highest power of 5 is much less than that compared to 2. So, we shall find the highest power of 5 in N.

Highest power of 5 in $N = \left[\frac{100}{5}\right] + \left[\frac{100}{5^2}\right] = 20 + 4 = 24$. Hence, required number of zeros = 24.

Ex. 39. What is the number of zeros at the end of the product $5^5 \times 10^{10} \times 15^{15} \times \dots \times 125^{125}$?

Sol. Clearly, the highest power of 2 is less than that of 5 in *N*.

So, the highest power of 2 in *N* shall give us the number of zeros at the end of *N*.

Highest power of 2 = Number of multiples of 2 + Number of multiples of 4 (i.e. 2^2) +

Number of multiples of 8 (i.e. 2^3) + Number of multiples of 16 (i.e. 2^4)

$$= [(10 + 20 + 30 + \dots + 120) + (20 + 40 + 60 + \dots + 120) + (40 + 80 + 120) + 80]$$

= (780 + 420 + 240 + 80) = 1520.

Hence, required number of zeros = 1520.

Ex. 40. On dividing 15968 by a certain number, the quotient is 89 and the remainder is 37. Find the divisor.

Sol. Divisor =
$$\frac{\text{Dividend} - \text{Remainder}}{\text{Quotient}} = \frac{15968 - 37}{89} = 179.$$

Ex. 41. A number when divided by 114, leaves remainder 21. If the same number is divided by 19, find the remainder. (S.S.C., 2010)

Sol. On dividing the given number by 114, let *k* be the quotient and 21 the remainder.

Then, number = $114 \ k + 21 = 19 \times 6k + 19 + 2 = 19 \ (6k + 1) + 2$.

- \therefore The given number when divided by 19 gives remainder = 2.
- **Ex. 42.** A number being successively divided by 3, 5 and 8 leaves remainders 1, 4 and 7 respectively. Find the respective remainders if the order of divisors be reversed.

Sol. 3 x 5 y-1 $x = (8 \times 1 + 7) = 15; y = (5 z + 4) = (5 \times 15 + 4) = 79;$ $x = (3y + 1) = (3 \times 79 + 1) = 238.$

Now, $\begin{array}{r}
1 - 7 \\
8 238 \\
5 29 - 6 \\
3 5 - 4 \\
1 - 2
\end{array}$

 \therefore Respective remainders are 6, 4, 2.

Ex. 43. Three boys A, B, C were asked to divide a certain number by 1001 by the method of factors. They took the factors in the orders 13, 11, 7; 7, 11, 13 and 11, 7, 13 respectively. If the first boy obtained 3, 2, 1 as successive remainders, then find the successive remainders obtained by the other two boys B and C.

Sol.

- Ex. 44. In a division sum, the divisor is ten times the quotient and five times the remainder. If the remainder is 46, determine the dividend. **Sol.** Remainder = 46 ; Divisor = 5 × 46 = 230 ; Quotient = $\frac{230}{10}$ = 23. \therefore Dividend = Divisor × Quotient + Remainder = $230 \times 23 + 46 = 5336$. Ex. 45. If three times the larger of the two numbers is divided by the smaller one, we get 4 as quotient and 3 as remainder. Also, if seven times the smaller number is divided by the larger one, we get 5 as quotient and 1 as remainder. Find the numbers. **Sol.** Let the larger number be *x* and the smaller number be *y*. Then, $3x = 4y + 3 \Rightarrow 3x - 4y = 3$...(*i*) And, $7y = 5x + 1 \Rightarrow -5x + 7y = 1$...(*ii*) Multiplying (*i*) by 5 and (*ii*) by 3, we get: ...(*iii*) -15x + 21y = 3 ...(*iv*) 15x - 20y = 15and Adding (*iii*) and (*iv*), we get: y = 18. Putting y = 18 in (*i*), we get: x = 25. Hence, the numbers are 25 and 18. Ex. 46. A number when divided by 6 leaves remainder 3. When the square of the same number is divided by 6, find the remainder. **Sol.** On dividing the given number by 6, let *k* be the quotient and 3 the remainder. Then, number = 6k + 3. Square of the number = $(6k + 3)^2 = 36k^2 + 9 + 36k = 36k^2 + 36k + 6 + 3$ = 6 $(6k^2 + 6k + 1) + 3$, which gives a remainder 3 when divided by 6. **Ex.** 47. Find the remainder when $9^6 + 7$ is divided by 8. **Sol.** $(x^n - a^n)$ is divisible by (x - a) for all values of *n*. So, $(9^6 - 1)$ is divisible by (9 - 1), i.e. $8 \Rightarrow (9^6 - 1) + 8$ is divisible by $8 \Rightarrow (9^6 + 7)$ is divisible by 8. Hence, required remainder = 0. **Ex.** 48. Find the remainder when $(397)^{3589} + 5$ is divided by 398. **Sol.** $(x^n + a^n)$ is divisible by (x + a) for all odd values of *n*. So, $[(397)^{3589} + 1]$ is divisible by (397 + 1), i.e. 398 \Rightarrow [{(397)³⁵⁸⁹ + 1} + 4] gives remainder 4 when divided by 398 \Rightarrow [(397)³⁵⁸⁹ + 5] gives remainder 4 when divided by 398. Ex. 49. If 7¹²⁶ is divided by 48, find the remainder. **Sol.** $7^{126} = (7^2)^{63} = (49)^{63}$. Now, since $(x^n - a^n)$ is divisible by (x - a) for all values of n, so $[(49)^{63} - 1]$ or $(7^{126} - 1)$ is divisible by (49 - 1) i.e. 48. \therefore Remainder obtained when $(7)^{126}$ is divided by 48 = 1. **Ex.** 50. Find the remainder when $(257^{166} - 243^{166})$ is divided by 500. **Sol.** $(x^n - a^n)$ is divisible by (x + a) for all even values of *n*. : $(257^{166} - 243^{166})$ is divisible by (257 + 243), i.e. 500. Hence, required remainder = 0. **Ex.** 51. Find a common factor of $(127^{127} + 97^{127})$ and $(127^{97} + 97^{97})$. **Sol.** $(x^n + a^n)$ is divisible by (x + a) for all odd values of *n*. : $(127^{127} + 97^{127})$ as well as $(127^{97} + 97^{97})$ is divisible by (127 + 97), i.e. 224. Hence, required common factor = 224. Ex. 52. A 99-digit number is formed by writing the first 59 natural numbers one after the other as: 1234567891011121314......5859 Find the remainder obtained when the above number is divided by 16.
 - **Sol.** The required remainder is the same as that obtained on dividing the number formed by the last four digits i.e. 5859 by 16, which is 3.

(OBJECTIVE TYPE QUESTIONS)

Directions: Mark (I) against the correct answer in each of the following:1. What is the place value of 5 in 3254710 ? (CLAT, 2010) (a) 512.(a) 5(b) 10000(c) 50000(d) 547102. The face value of 8 in the number 458926 is(R.R.B., 2006) (a) 8(a) 8(b) 1000(c) 8000(d) 89263. The sum of the place values of 3 in the number 503535 is(M.B.A., 2005) (d) 6(a) 6(b) 60(c) 3030(d) 33004. The difference between the place values of 7 and 3 in the number 527435 is(a) 4(b) 5(c) 45(d) 69705. The difference between the local value and the face value of 7 in the numeral 32675149 is(a) 5149(b) 64851(c) 69993(d) 75142(e) None of these6. The sum of the greatest and smallest number of five digits is(a) 11,110(b) 10,999(c) 109,999(d) 111,1107. If the largest three-digit number is subtracted from the smallest five-digit number of four digits formed by using the digits 2, 4, 0, 7?(c) 2005(d) 30025(a) 31005(b) 300259. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7?(c) 2407(d) 247010. All natural numbers and 0 are called the numbers.(a) rational (d) prime11. Consider the following statements about natural numbers:(1) There exists a smallest natural number. (2) There exists a largest natural number.(2) There exists a largest natural numb		(OBJECTIVE TY	PE Q
1. What is the place value of 5 in $3254710?$ (CLAT, 2010 (a) 5 (b) 10000 (a) 5 (b) 10000 (c) 50000 (d) 54710 2. The face value of 8 in the number 458926 is (R.R.B., 2006) (a) 8 (b) 1000 (c) 8000 (d) 8926 3. The sum of the place values of 3 in the number 503535 is (M.B.A., 2005) (a) 6 (b) 60 (c) 3030 (d) 3300 4. The difference between the place values of 7 and 3 in the number 527435 is (a) 4 (b) 5 (c) 45 (d) 6970 5. The difference between the local value and the face value of 7 in the numeral 32675149 is 16. (a) 5149 (b) 64851 (c) 69993 (d) 75142 17. (c) 69993 (d) 111,110 11. 17. 17. (f) He largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (b) 9000 17. (c) 109,999 (d) 111,110 18. 18. 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (a) 3005 (d) 30025 9. 19. 19. 9. What is the minimum number of four digits formed by using the digits		0	
(a) 5 (b) 1000 (c) 50000 (d) 54710 2. The face value of 8 in the number 458926 is (R.R.B., 2006) (a) 8 (b) 1000 (a) 8 (b) 1000 (c) 8000 (d) 8926 14. 3. The sum of the place values of 3 in the number 503535 is (M.B.A., 2005) (a) 6 (b) 60 (c) 3030 (d) 3300 15. 4. The difference between the place values of 7 and 3 in the number 527435 is (a) 4 (b) 5 (c) 45 (d) 6970 5. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 5149 (b) 64851 (c) 69993 (d) 75142 (e) None of these 6. The sum of the greatest and smallest number of five digits is (M.C.A., 2005) (a) 11,110 (b) 10,999 (d) 111,110 7. If the largest three-digit number, then the remainder is (a) 1 (b) 9000 (c) 109,999 (d) 30015 (c) 30005 (d) 30025 18. 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 2407 10. 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 </th <th></th> <th></th> <th>10</th>			10
(c) 50000 (d) 54710 2. The face value of 8 in the number 458926 is (a) 8 (b) 1000 (c) 8000 (d) 8926 3. The sum of the place values of 3 in the number 503535 is (a) 6 (b) 60 (c) 3030 (d) 3300 4. The difference between the place values of 7 and 3 in the number 527435 is (a) 4 (a) 4 (b) 5 (c) 45 (d) 6970 5. The difference between the local value and the face value of 7 in the numeral 32675149 is 16. (a) 5149 (b) 64851 (c) 69993 (c) 69993 (d) 75142 (f) None of these 6. The sum of the greatest and smallest number of five digits is (M.C.A., 2005) (a) 11,110 (b) 10,999 (c) 109,999 (c) 109,999 (d) 111,110 7. If the largest three-digit number is subtracted from the smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 2407 (c) 2407 (d) 2470 10. 8. The smallest number of the yearce and 0 are called the numbers. (c) 2407 (d) 2470 20.	1.	*	12.
2. The face value of 8 in the number 458926 is (a) 8 (b) 1000 (c) 8000 (c) 8000 (c) 8000 (c) 8000 (c) 8000 (c) 8000 (c) 8000 (c) 8000 (c) 3030 (d) 6 (d) 60 (c) 3030 (d) 3300 (d) 3300 (d) 3300 (e) 4 (f) 4 <td></td> <td></td> <td></td>			
458926 is (R.R.B., 2006) (a) 8 (b) 1000 (c) 8000 (d) 8926 3. The sum of the place values of 3 in the number 503535 is (M.B.A., 2005) (a) 6 (b) 60 (c) 3030 (d) 3300 4. The difference between the place values of 7 and 3 in the number 527435 is (a) 4 (a) 4 (b) 5 (c) 45 (d) 6970 5. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 5149 (a) 5149 (b) 64851 (c) 69993 (d) 17112 (e) None of these (M.C.A., 2005) (a) 11,110 (b) 10,999 (c) 109,999 (d) 111,110 7. If the largest three-digit number is subtracted from the smallest five-digit number is subtracted from the smallest five-digit number is subtracted from the smallest five-digit number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called the	_		
(a) 8(b) 100014.(c) 8000(d) 892614.3. The sum of the place values of 3 in the number 503535 is(M.B.A., 2005)(a) 6(b) 60(c) 303015.(a) 6(b) 5(c) 303015.4. The difference between the place values of 7 and 3 in the number 527435 is16.(a) 4(b) 5(c) 45(d) 69705. The difference between the local value and the face value of 7 in the numeral 32675149 is16.(a) 5149(b) 64851(c) 69993(d) 75142(e) None of these(E) The sum of the greatest and smallest number of five 	2.		13.
(c) 8000(d) 892614.3. The sum of the place values of 3 in the number 503535 is (a) 6(b) 60 (c) 303015.4. The difference between the place values of 7 and 3 in the number 527435 is (a) 4(b) 5 (c) 4515.(a) 4(b) 5 (c) 45(d) 697016.5. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 5149 16.(c) 69993(d) 75142(e) None of these6. The sum of the greatest and smallest number of five digits is (c) 109,999(d) 111,1107. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1(b) 9000 (c) 9001(c) 9001(d) 900018. The smallest number of 5 digits beginning with 3 and ending with 5 will be (c) 3000518.9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (c) 240719.9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (c) 240720.10. All natural numbers and 0 are called the numbers. (c) whole(d) prime (d) prime11. Consider the following statements about natural numbers: (1) There exists a smallest natural number.21.			
3. The sum of the place values of 3 in the number 503535 is (M.B.A., 2005) (a) 6 (b) 60 (c) 3030 (cl) 330015.4. The difference between the place values of 7 and 3 in the number 527435 is (a) 4 (b) 5 (c) 45 (cl) 697015.5. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 5149 (b) 64851 (c) 69993 (cl) 75142 (e) None of these16.6. The sum of the greatest and smallest number of five digits is (M.C.A., 2005) (a) 11,110 (b) 10,999 (c) 109,999 (cl) 111,11017.7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (cl) 9000118.8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (cl) 3002519.9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (cl) 247020.10. All natural numbers and 0 are called the numbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (cl) prime21.11. Consider the following statements about natural numbers: (1) There exists a smallest natural number.21.			
503535 is(M.B.A., 2005)(a) 6(b) 60(c) 3030(d) 33004. The difference between the place values of 7 and 3in the number 527435 is(a) 4(b) 5(c) 45(d) 69705. The difference between the local value and the facevalue of 7 in the numeral 32675149 is(a) 5149(b) 64851(c) 69993(d) 75142(e) None of these6. The sum of the greatest and smallest number of fivedigits is(M.C.A., 2005)(a) 11,110(b) 10,999(c) 109,999(d) 111,1107. If the largest three-digit number is subtracted fromthe smallest five-digit number is subtracted fromthe smallest number of 5 digits beginning with 3and ending with 5 will be(c) 30005(d) 30025(d) 31005(b) 30015(c) 2407(d) 2477(c) 2407(d) 2470(d) All natural numbers and 0 are called thenumbers.(R.R.B., 2006)(a) rational(b) integer(c) whole(d) prime11. Consider the following statements about natural numbers:(1) There exists a smallest natural number.(2) There exists a largest natural number.			14.
(c) 3030 (d) 3300 15.4. The difference between the place values of 7 and 3 in the number 527435 is (a) 4(b) 5 (c) 4516.(a) 4(b) 5 (c) 45(d) 69705. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 5149 16.(a) 5149(b) 64851 (c) 69993(d) 75142(e) None of these(M.C.A., 2005) (a) 11,110(f) 10,999 (c) 109,999(f) 11,110(h) 10,999 (c) 109,999(d) 111,1107. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1(h) 9000 (c) 90018. The smallest number of 5 digits beginning with 3 and ending with 5 will be (c) 30005 (h) 30015 (c) 30005 18.9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (c) 2407(P.C.S., 2007) (d) 247020.10. All natural numbers and 0 are called the numbers. (c) whole(h) integer (c) whole20.11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number.21.	3.	503535 is (M.B.A., 2005)	
(c) 3030 (d) 3300 4. The difference between the place values of 7 and 3 in the number 527435 is (a) 4(b) 5 (c) 45(a) 4(b) 5 (c) 45(d) 69705. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 5149 (b) 64851 (c) 69993(c) 69993(d) 75142(e) None of these6. The sum of the greatest and smallest number of five digits is (a) $11,110$ (b) $10,999$ (c) $109,999$ (d) $111,110$ 17.7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (c) 900118.8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (c) 30005 (d) 30025 18.9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (c) 2407 (d) 247019.10. All natural numbers and 0 are called the numbers. (a) rational (b) integer (c) whole (d) prime20.11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number.21.		(<i>a</i>) 6 (<i>b</i>) 60	15
in the number 527435 is (a) 4 (b) 5 (c) 45 (d) 6970 5. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 5149 (b) 64851 (c) 69993 (d) 75142 (e) None of these 6. The sum of the greatest and smallest number of five digits is (M.C.A., 2005) (a) 11,110 (b) 10,999 (c) 109,999 (d) 111,110 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called the numbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. (2) There exists a largest natural number.		(c) 3030 (d) 3300	15.
(c) 45(d) 69705. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 514916.(a) 5149(b) 64851 (c) 69993(d) 75142 (e) None of these6. The sum of the greatest and smallest number of five digits is(M.C.A., 2005) (a) 11,11017.(c) 109,999(d) 111,11017.7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 118.8. The smallest number of 5 digits beginning with 3 and ending with 5 will be(R.R.B., 2006) (d) 3002519.9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (c) 240719.10. All natural numbers and 0 are called the numbers.(R.R.B., 2006) (d) prime20.(a) rational (b) integer (c) whole(d) prime21.11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number.21.	4.	1	
5. The difference between the local value and the face value of 7 in the numeral 32675149 is (a) 5149 (b) 64851 (c) 69993 (d) 75142 (e) None of these16.6. The sum of the greatest and smallest number of five digits is (M.C.A., 2005) (a) 11,110 (b) 10,999 (c) 109,999 (d) 111,11017.7. If the largest three-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (d) 9000118.8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 3002519.9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 247020.10. All natural numbers and 0 are called the numbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime21.11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number.21.		(<i>a</i>) 4 (<i>b</i>) 5	
 3. The uniference between the rocal value and the face value of 7 in the numeral 32675149 is (a) 5149 (b) 64851 (c) 69993 (d) 75142 (e) None of these 6. The sum of the greatest and smallest number of five digits is (M.C.A., 2005) (a) 11,110 (b) 10,999 (c) 109,999 (d) 111,110 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called the numbers. (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(c) 45 (d) 6970	
(a) 5149 (b) 64851 (c) 69993 (d) 75142 (e) None of these (a) The sum of the greatest and smallest number of five digits is (a) 11,110 (b) 10,999 (c) 109,999 (d) 111,110 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is 1 (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (a) 31005 (b) 30015 (c) 30005 (d) 30025 19. 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2447 (c) 2407 (d) 2470 20. 10. 10. All natural numbers and 0 are called the< (a) rational	5.	The difference between the local value and the face	16.
(c) 69993 (d) 75142 (e) None of these6. The sum of the greatest and smallest number of five digits is(M.C.A., 2005)17.(a) 11,110(b) 10,999(d) 111,1107. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1(b) 900018.8. The smallest number of 5 digits beginning with 3 and ending with 5 will be(R.R.B., 2006)18.9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7?(P.C.S., 2007)19.10. All natural numbers and 0 are called the numbers.(A) 247020.11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number.21.		value of 7 in the numeral 32675149 is	
 (e) None of these 6. The sum of the greatest and smallest number of five digits is (M.C.A., 2005) (a) 11,110 (b) 10,999 (c) 109,999 (d) 111,110 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (2) There exists a smallest natural number. (2) There exists a largest natural number. (2) There exists a lar		(a) 5149 (b) 64851	
 6. The sum of the greatest and smallest number of five digits is (M.C.A., 2005) (a) 11,110 (b) 10,999 (c) 109,999 (d) 111,110 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(c) 69993 (d) 75142	
digits is (M.C.A., 2005) 17. (a) 11,110 (b) 10,999 111,110 (c) 109,999 (d) 111,110 1 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is 1 1 (a) 1 (b) 9000 (c) 9001 18. 18. 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) 19. (a) 31005 (b) 30015 19. 19. 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) 10. (a) 2047 (b) 2247 20. 20. (a) rational (b) integer 20. 21. 11. Consider the following statements about natural numbers: 21. (1) There exists a smallest natural number. 22. 21.		(e) None of these	
digits is (M.C.A., 2005) 17. (a) 11,110 (b) 10,999 111,110 (c) 109,999 (d) 111,110 1 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is 1 1 (a) 1 (b) 9000 (c) 9001 18. 18. 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) 19. (a) 31005 (b) 30015 19. 19. 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) 10. (a) 2047 (b) 2247 20. 20. (a) rational (b) integer 20. 21. 11. Consider the following statements about natural numbers: 21. (1) There exists a smallest natural number. 22. 21.	6.	The sum of the greatest and smallest number of five	
 (a) 11,110 (b) 10,999 (c) 109,999 (d) 111,110 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 			18
 7. If the largest three-digit number is subtracted from the smallest five-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(a) 11,110 (b) 10,999	17.
 the smallest five-digit number, then the remainder is (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(c) 109,999 (d) 111,110	
 (a) 1 (b) 9000 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 20. 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 	7.	If the largest three-digit number is subtracted from	
 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		the smallest five-digit number, then the remainder is	
 (c) 9001 (d) 90001 8. The smallest number of 5 digits beginning with 3 and ending with 5 will be (R.R.B., 2006) (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 20. 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(a) 1 (b) 9000	10
and ending with 5 will be(R.R.B., 2006)(a) 31005(b) 30015(c) 30005(d) 300259. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7?(P.C.S., 2007)(a) 2047(b) 2247(c) 2407(d) 247010. All natural numbers and 0 are called the numbers.(R.R.B., 2006)(a) rational(b) integer (c) whole(c) whole(d) prime11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number.		(c) 9001 (d) 90001	10.
 (a) 31005 (b) 30015 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 20. 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 	8.	The smallest number of 5 digits beginning with 3	
 (c) 30005 (d) 30025 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		and ending with 5 will be (R.R.B., 2006)	
 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(<i>a</i>) 31005 (<i>b</i>) 30015	
 9. What is the minimum number of four digits formed by using the digits 2, 4, 0, 7? (P.C.S., 2007) (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(c) 30005 (d) 30025	19
 (a) 2047 (b) 2247 (c) 2407 (d) 2470 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 	9.	What is the minimum number of four digits formed	19.
(c) 2407(d) 247020.10. All natural numbers and 0 are called the numbers. (a) rational (c) whole(b) integer (d) prime21.11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number.21.		by using the digits 2, 4, 0, 7? (P.C.S., 2007)	
10. All natural numbers and 0 are called the numbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime20.11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number.21.		(<i>a</i>) 2047 (<i>b</i>) 2247	
 10. All natural numbers and 0 are called thenumbers. (R.R.B., 2006) (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(c) 2407 (d) 2470	20
 (a) rational (b) integer (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 	10.	All natural numbers and 0 are called the	20.
 (c) whole (d) prime 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		numbers. (R.R.B., 2006)	
 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(<i>a</i>) rational (<i>b</i>) integer	
 11. Consider the following statements about natural numbers: (1) There exists a smallest natural number. (2) There exists a largest natural number. 		(c) whole (d) prime	21
(1) There exists a smallest natural number.(2) There exists a largest natural number.	11.	Consider the following statements about natural	21.
(2) There exists a largest natural number.			
(2) There exists a largest natural number.		(1) There exists a smallest natural number.	
		(2) There exists a largest natural number.	
		-	22

a natural number.

Which of the above statements is/are correct?

C	UESTIONS)	
	(a) None	(b) Only 1
	(c) 1 and 2	(<i>d</i>) 2 and 3
2.	Every rational number is	also
	(a) an integer	(b) a real number
	(c) a natural number	(d) a whole number
3.	The number π is	(R.R.B., 2005)
	(a) a fraction	(b) a recurring decimal
	(c) a rational number	(d) an irrational number
4.	$\sqrt{2}$ is a/an	
	(a) rational number	(b) natural number
	(c) irrational number	(d) integer
5	The number $\sqrt{3}$ is	
	(<i>a</i>) a finite decimal	
	(<i>b</i>) an infinite recurring d	ecimal
	(<i>c</i>) equal to 1.732	
	(<i>d</i>) an infinite non-recurri	ng decimal
.6.	There are just two ways in	
	as the sum of two diffe	
		1 = 3 + 2. In how many
	ways, 9 can be expressed a	
	positive (non-zero) intege	
	(<i>a</i>) 3	(<i>b</i>) 4
	(c) 5	(<i>d</i>) 6
.7.	<i>P</i> and <i>Q</i> are two posi $PQ = 64$. Which of the value of $P + Q$?	
	(<i>a</i>) 16	(<i>b</i>) 20
	(c) 35	(<i>d</i>) 65
8.	If $x + y + z = 9$ and both $y = 1$	· · /
	greater than zero, then the	
	take is	(Campus Recruitment, 2006)
	(<i>a</i>) 3	(<i>b</i>) 7
	(<i>c</i>) 8	(d) Data insufficient
.9.	What is the sum of the s	quares of the digits from
	1 to 9?	
	(<i>a</i>) 105	(b) 260
	(c) 285	(<i>d</i>) 385
20.	If <i>n</i> is an integer between the following could be <i>n</i>	
	the following could be n	_
	(<i>a</i>) 47 (<i>c</i>) 84	(b) 58 (d) 88
1	Which one of the following	
.1.	in respect of the Roman r	numerals: <i>C</i> , <i>D</i> , <i>L</i> and <i>M</i> ?
	(a) $C > D > I > M$	(Civil Services, 2008) (b) $M > L > D > C$
	(a) $C > D > L > M$ (c) $M > D > C > L$	(b) $M > L > D > C$ (d) $L > C > D > M$
2	If the numbers from 1 to 1	
		ling order, which number

22. If the numbers from 1 to 24, which are divisible by 2 are arranged in descending order, which number will be at the 8th place from the bottom? (CLAT, 2010)

	(<i>a</i>) 10	(<i>b</i>) 12
	(c) 16	(<i>d</i>) 18
23.	2 - 2 + 2 - 2 + 101	
	(a) - 2	(<i>b</i>) 0
	(c) 2	(<i>d</i>) None of these
24.	98th term of the infinite s	
	1, 2, is	(M.C.A., 2005)
	(<i>a</i>) 1	(<i>b</i>) 2
	(c) 3	(<i>d</i>) 4
25.	If x , y , z be the digits of a	a number beginning from
	the left, the number is	
	(a) xyz	(b) $x + 10y + 100z$
	(c) $10x + y + 100z$	(d) $100x + 10y + z$
26.	If x , y , z and w be the digit	ů ů
	from the left, the number	is
	(a) xyzw	
	(b) wzyx	
	(c) $x + 10y + 100z + 1000z$	w
07	(d) $10^3x + 10^2y + 10z + w$	
27.	If n and p are both odd following is an even pum	
	following is an even num $(a) n + p$	(b) $n + p + 1$
	(a) $n + p$ (c) $np + 2$	$\begin{array}{c} (b) n + p + 1 \\ (d) np \end{array}$
28	For the integer <i>n</i> , if n^3 is	
20.	following statements are	
	I. <i>n</i> is odd.	II. n^2 is odd.
	III. n^2 is even.	
	(a) I only	(b) II only
	(c) I and II only	(d) I and III only
29.	If $(n - 1)$ is an odd number	er, what are the two other
	odd numbers nearest to i	t?
	(a) $n, n-1$	(<i>b</i>) <i>n</i> , <i>n</i> – 2
	(c) $n - 3, n + 1$	(<i>d</i>) $n - 3, n + 5$
30.	Which of the following is	-
	(a) Sum of two odd numl	
	(b) Difference of two odd	
	(c) Product of two odd nu	umbers
	(<i>d</i>) None of these	
31.	If x is an odd integer, the	en which of the following
	is true? (a) $5x - 2$ is even	(b) $5x^2 + 2$ is odd
	(<i>a</i>) $5x - 2$ is even (<i>c</i>) $5x^2 + 3$ is odd	(d) None of these
32	If a and b are two number	
02.	in a und b ure two numbe	(R.R.B., 2006)
	(a) $a = 0$ and $b = 0$	(b) $a = 0$ or $b = 0$ or both
	(c) $a = 0$ and $b \neq 0$	(d) $b = 0$ and $a \neq 0$
33.	If A, B, C, D are number	
	<i>D</i> , <i>B</i> , <i>E</i> are numbers in dec	
	one of the following sequ	÷
	a decreasing nor in an ine	creasing order?
	(a) E, C, D	(b) E, B, C
	(c) D, B, A	(<i>d</i>) <i>A</i> , <i>E</i> , <i>C</i>

34.	If <i>m</i> , <i>n</i> , <i>o</i> , <i>p</i> and <i>q</i> are integ must be even when which	
	(a) <i>m</i>	(b) p
	(c) $m + n$	(<i>d</i>) $n + p$
35.	If <i>n</i> is a negative number, the state is the least?	hen which of the following
	(<i>a</i>) 0	(b) - n
	(c) 2n	(<i>d</i>) n^2
36.	If $x - y = 8$, then which true?	of the following must be
	I. Both x and y are positiv	ve.
	II. If x is positive, y must	
	III. If x is negative, y must	st be negative.
	(a) I only	(b) II only
	(c) I and II	(d) III only
37.	If x and y are negative, the	en which of the following
	statements is/are always	true?
	I. $x + y$ is positive.	
	II. <i>xy</i> is positive.	
	III. $x - y$ is positive.	
	(a) I only	(b) II only
	(c) III only	(d) I and III only
38.	If $n = 1 + x$, where x is the	
	tive positive integers, the is/are true?	n which of the following
	I. <i>n</i> is odd.	II. n is prime.
	III. <i>n</i> is a perfect square.	
	(a) I only	(b) I and II only
	(c) I and III only	(d) None of these
39.	If $x = \frac{2}{5}y + 3$, how does y	change when x increases
	from 1 to 2?	5
	(a) y increases from -5 to	$3 - \frac{1}{2}$
	(b) y increases from $\frac{2}{5}$ to	5
	5	
	(c) y increases from $\frac{5}{2}$ to $\frac{5}{2}$	5
	(d) y decreases from -5 t	
40.	If <i>x</i> is a rational number number, then	er and y is an irrational
	(<i>a</i>) both $x + y$ and xy are	necessarily rational
	(b) both $x + y$ and xy are	5
	(c) <i>xy</i> is necessarily irration	5
	rational or irrational	, 5
	(<i>d</i>) $x + y$ is necessarily irrat	tional, but <i>xy</i> can be either
	rational or irrational	
41.	The difference between th	ne square of any two con-
	secutive integers is equal	
	(a) sum of two numbers	
	(b) difference of two num	bers

- (c) an even number
- (d) product of two numbers

42.	Between two distinct ration exists another rational nu		51.
	(a) $\frac{a}{2}$	(b) $\frac{b}{2}$	
	(c) $\frac{ab}{2}$	(d) $\frac{a+b}{2}$	52.
43.	If $B > A$, then which express value (given that A and B	0	
	$\begin{array}{l} (a) \ A - B \\ (c) \ A + B \end{array}$	(b) AB (d) Can't say	53.
44.	If $0 < x < 1$, which of the		
	(a) x	(b) x^2	
45.	(c) $\frac{1}{x}$ If <i>p</i> is a positive fraction	(d) $\frac{1}{x^2}$ less than 1, then	Dire repe
	1	(b) $\frac{1}{v}$ is a positive integer	, cpc
	(c) p^2 is less than p	,	
10	(d) $\frac{2}{p} - p$ is a positive num		
40.	If <i>x</i> is a real number, then (<i>a</i>) less than $\frac{3}{4}$	$x^{-} + x + 1$ 1S	54.
	(<i>b</i>) zero for at least one v	alue of <i>x</i>	
	(c) always negative(d) greater than or equal	to $\frac{3}{4}$	55.
47.	Let n be a natural numbe	r such that $\frac{1}{2} + \frac{1}{3} + \frac{1}{7} + \frac{1}{n}$	
	is also a natural number statements is not true?	. Which of the following (A.A.O. Exam, 2009)	56.
	(c) 7 divides n	(b) 3 divides n (d) $n > 84$	57.
48.	If <i>n</i> is an integer, how m an integral value of $\left(\frac{16n}{n}\right)$	any values of <i>n</i> will give $\binom{2}{n} + 7n + 6$	
	(a) 2	$\begin{pmatrix} n \\ b \end{pmatrix}$	58.
49.	(c) 4 If $p > q$ and $r < 0$, then w	(d) None of these	59.
	(a) $pr < qr$ (c) $p + r < q + r$	 (<i>b</i>) <i>p</i> - <i>r</i> < <i>q</i> - <i>r</i> (<i>d</i>) None of these 	
50.	If $X < Z$ and $X < Y$, we necessarily true?	Ŭ	
	I. $Y < Z$ III. $ZX < Y + Z$	II. $X^2 < YZ$	
	(a) Only I(c) Only III	(b) Only II(d) None of these	60.
			1

		QUANITIATIVE APTITUDE
l.	In the relation $x > y + z$, x of the following is necess	
	(a) $y > p$	(b) $x + y > z$
		-
	(c) y + p > x	(<i>d</i>) Insufficient data
2.	If <i>a</i> and <i>b</i> are positive then	integers and $\frac{(a-b)}{3.5} = \frac{4}{7}$, (Campus Recruitment, 2010)
	(a) $b > a$	
		$(b) \ b < a$
	$(c) \ b = a$	(d) $b \ge a$
3.	If $13 = \frac{13 w}{(1 - w)}$, then $(2w)^2$	$^{2} = ?$
	$(1-w)^{\prime}$	(Campus Recruitment, 2009)
	1	
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$
	4	2
	(c) 1	(<i>d</i>) 2
re	ctions (Questions 54–57): F	For a 5–digit number. without
	ition of digits, the following	
		(B.B.A., 2006)
	(i) The first digit is more	than 5 times the last digit.
	0	Ũ
		of two prime numbers.
		_
	(<i>iii</i>) The first three digits	
		t contain the digits 3 or 0
	and the first digit is a	
ł.	The second digit of the n	
	(<i>a</i>) 5	(b) 7
	(c) 9	
	(d) Cannot be determined	l
5.	The last digit of the num	ber is
	(<i>a</i>) 0	(<i>b</i>) 1
	(c) 2	(<i>d</i>) 3
5.	The largest digit in the n	
	(<i>a</i>) 5	(<i>b</i>) 7
	(c) 8	(<i>d</i>) 9
7.		is a factor of the given
	number?	
	(<i>a</i>) 2	(<i>b</i>) 3
	(a) = 2 (c) 4	(d) 9
3.	The least prime number	
	(a) 0	(b) 1
_	(c) 2	(<i>d</i>) 3
).	Consider the following st	
		te numbers, then $x + y$ is
	always composite.	
		natural number which is
	neither prime nor com	-
	Which of the above states	ments is/are correct?
	(a) 1 only	(h) 2 only

(*a*) 1 only (*b*) 2 only

(*c*) Both 1 and 2 (*d*) Neither 1 nor 2

60. The number of prime numbers between 0 and 50 is

 (a) 14
 (b) 15

 (c) 16
 (d) 17

61.	The prime numbers dividing 143 and leaving a remainder of 3 in each case are		74.	1	e numbers is 100. If one er by 36, then one of the
	(<i>a</i>) 2 and 11	(<i>b</i>) 11 and 13		numbers is	
	(c) 3 and 7	(<i>d</i>) 5 and 7		(<i>a</i>) 7	(<i>b</i>) 29
62.	The sum of the first four			(c) 41	(<i>d</i>) 67
	(<i>a</i>) 10	(b) 11	75	Which one of the follow	
	(<i>c</i>) 16	(<i>d</i>) 17	73.		
()				(<i>a</i>) 161	(<i>b</i>) 221
63.	_	e numbers from 1 to 20 is		(c) 373	(<i>d</i>) 437
	(<i>a</i>) 75	<i>(b)</i> 76	76.		per, that is the fifth term of
	(c) 77	(<i>d</i>) 78		an increasing arithmetic	sequence in which all the
64.	A prime number N , in the formula of N is a second sec	ne range 10 to 50, remains		four preceding terms are	e also prime, is
	unchanged when its digi	ts are reversed. The square		(<i>a</i>) 17	(<i>b</i>) 29
	of such a number is			(c) 37	(<i>d</i>) 53
	(<i>a</i>) 121	(<i>b</i>) 484	77		numbers between 301 and
	(c) 1089	(<i>d</i>) 1936		320 are	lumberb between oor und
65.		when any prime number			(b) 4
	greater than 6 is divided	5 1		(a) 3	(b) 4
	8	(Campus Recruitment, 2007)		(c) 5	(<i>d</i>) 6
	(a) either 1 or 2	(b) either 1 or 3	78.	Consider the following s	tatements:
	(c) either 1 or 5	(d) either 3 or 5			then it can be written as
	. ,			4n + 1 or $4n + 3$ for a	suitable natural number <i>n</i> .
66.	Which of the following i	-		2. If $p > 2$ is a prime, the	en $(p-1)(p+1)$ is always
		(CLAT, 2010)		divisible by 4.	V / V /
	(<i>a</i>) 21	(<i>b</i>) 23		Of these statements,	
	(c) 29	(<i>d</i>) 43		(<i>a</i>) (1) is true but (2) is f	also
67.	Which of the following i	s a prime number?			
		(CLAT, 2010)	(b) (1) is false but (2) is true (1)		true
	(<i>a</i>) 19	(<i>b</i>) 20		(c) (1) and (2) are false	
	(c) 21	(<i>d</i>) 22		(<i>d</i>) (1) and (2) are true	
68.	Which of the following i	s a prime number?	79.	What is the first value of	of <i>n</i> for which $n^2 + n + 41$
	0	(Campus Recruitment, 2008)		is not a prime?	
	(<i>a</i>) 115	(<i>b</i>) 119		(<i>a</i>) 1	(<i>b</i>) 10
	(c) 127	(d) None of these		(c) 20	(<i>d</i>) 40
69	Which of the following i		80.		, where $p_1, p_2,, p_k$ are
07.	which of the following i	-		the first k primes.	, where p_1, p_2 ,, p_k are
	(a) 142	(R.R.B., 2006) (<i>b</i>) 289		Consider the following:	
	(a) 143			0	
	(c) 117	(<i>d</i>) 359		1. X_k is a prime number.	
70.		tural number <i>n</i> , for which		2. X_k is a composite num	
	2n + 1 is not a prime nu	and a second		3. $X_k + 1$ is always an ev	ven number.
	(<i>a</i>) 3	(b) 4		Which of the above is/a	re correct?
	(<i>c</i>) 5	(d) None of these		(a) 1 only	(<i>b</i>) 2 only
71.	The smallest three-digit	prime number is		(c) 3 only	(<i>d</i>) 1 and 3
	(<i>a</i>) 101	(<i>b</i>) 103	01		
	(c) 107	(d) None of these	81.	$6 \times 3 (3 - 1)$ is equal to	(CLAT, 2010)
72.		s between 110 and 120 are		(<i>a</i>) 19	(<i>b</i>) 20
	prime numbers?	(M.B.A., 2006)		(c) 36	(<i>d</i>) 53
	(<i>a</i>) 0	(b) 1	82.	1234 + 2345 - 3456 + 456	67 =?(Bank Recruitment, 2010)
				(<i>a</i>) 4590	(<i>b</i>) 4670
	(c) 2	(<i>d</i>) 3			
	(e) 4			(c) 4680	(<i>d</i>) 4690
73.	-	re arranged in ascending		(e) None of these	
		st three is 385 and that of	83.	5566 - 7788 + 9988 =? +	4444 (Bank Recruitment, 2010)
	last three is 1001. The last	rgest prime number is		(<i>a</i>) 3223	(<i>b</i>) 3232
		(R.R.B., 2006)		(<i>c</i>) 3322	(<i>d</i>) 3333
	(<i>a</i>) 9	(<i>b</i>) 11			(4) 0000
	(c) 13	(<i>d</i>) 17		(e) None of these	

18

QUANTITATIVE APTITUDE

84. 38649 - 1624 - 4483 =? (Bank Recruitment, 2009) (a) 32425 (*b*) 32452 (c) 34522 (*d*) 35422 (e) None of these 85. 884697 - 773697 - 102479 =? (Bank Recruitment, 2009) (*a*) 8251 (b) 8512 (c) 8521 (*d*) 8531 (e) None of these **86.** 10531 + 4813 - 728 =? × 87 (Bank Recruitment, 2008) (b) 172 (a) 168 (c) 186 (*d*) 212 (e) None of these 87. What is 394 times 113? (a) 44402 (b) 44522 (c) 44632 (d) 44802 (e) None of these **88.** 1260 ÷ 14 ÷ 9 =? (Bank P.O., 2009) (a) 9 (*b*) 10 (c) 81 (*d*) 810 (e) None of these **89.** 136 × 12 × 8 =? (Bank P.O., 2009) (a) 12066 (b) 13046 (c) 13064 (d) 13066 (e) None of these **90.** 8888 + 848 + 88 -? = 7337 + 737 (Bank P.O., 2009) (a) 1450 (b) 1550 (c) 1650 (d) 1750 (e) None of these **91.** 414 ×? × 7 = 127512 (Bank P.O., 2009) (a) 36 (b) 40 (c) 44 (*d*) 48 (e) None of these 92. Product of 82540027 and 43253 is (a) 3570103787831 (b) 3570103787832 (c) 3570103787833 (d) 3570103787834 **93.** $(46351 - 36418 - 4505) \div? = 1357$ (Bank P.O., 2009) (*a*) 2 (b) 3 (c) 4 (*d*) 6 (e) None of these **94.** 6 × 66 × 666 =? (Bank Recruitment, 2007) (a) 263376 (b) 263763 (c) 263736 (d) 267336 (e) None of these 95. If you subtract – 1 from + 1, what will be the result? (R.R.B., 2006) (a) - 2(*b*) 0 (c) 1 (*d*) 2 **96.** 8 + 88 + 888 + 8888 + 88888 + 888888 =? (a) 897648 (b) 896748 (c) 986748 (d) 987648 (e) None of these

97.	From the sum of 17 and – 2	12, subtract 48. (E.S.I.C., 2006)
	(a) - 43	(<i>b</i>) – 48
	(c) - 17	(d) - 20
98.	60840 ÷ 234 =?	
	(<i>a</i>) 225	(<i>b</i>) 255
	(c) 260	(<i>d</i>) 310
	(e) None of these	()
99.	$3578 + 5729 -? \times 581 = 56$	821
	(<i>a</i>) 3	(<i>b</i>) 4
	(c) 6	(d) None of these
100.	- 95 ÷ 19 =?	()
	(a) - 5	(b) - 4
	(c) 0	(d) 5
101.	12345679×72 is equal to	
101.	(<i>a</i>) 888888888	(<i>b</i>) 888888888
	(<i>c</i>) 898989898	(<i>d</i>) 999999998
102	8899 - 6644 - 3322 =? - 1	
102.	(<i>a</i>) 55	(<i>b</i>) 65
	(<i>c</i>) 75	(<i>d</i>) 85
	(e) None of these	() 00
103.	$74844 \div ? = 54 \times 63$	(Bank P.O., 2009)
	(<i>a</i>) 22	(b) 34
	(c) 42	(<i>d</i>) 54
	(e) None of these	
104.	1256 × 3892 =?	
	(<i>a</i>) 4883852	(<i>b</i>) 4888532
	(c) 4888352	(<i>d</i>) 4883582
	(e) None of these	
105.	What is 786 times 964?	(Bank P.O., 2008)
	(a) 757704	(b) 754164
	(c) 759276	(<i>d</i>) 749844
	(e) None of these	
106.	What is 348 times 265?	(S.B.I.P.O., 2008)
	(a) 88740	(<i>b</i>) 89750
	(c) 92220	(<i>d</i>) 95700
	(e) None of these	
107.	$(71 \times 29 + 27 \times 15 + 8 \times$	-
	(<i>a</i>) 2496	(<i>b</i>) 3450
	(c) 3458	(d) None of these
108.	$? \times (a \times b) = -ab$	
	(<i>a</i>) 0	(b) -1
100	(c) 1	(d) None of these
109.	$(46)^2 - (?)^2 = 4398 - 3066$	(1) 20
	(a) 16 (c) $2($	(b) 28
	$\begin{array}{c} (c) 36 \\ (c) None of these \end{array}$	(<i>d</i>) 42
110	(e) None of these $(800 \div 64) \times (1296 \div 36) =$	-2
110.	$(800 \div 64) \times (1296 \div 36) =$ (a) 420	(b) 460
	(<i>a</i>) 420 (<i>c</i>) 500	(<i>d</i>) 540
	(e) None of these	, 0 20

111	5358 × 51 =?			I	(c) 2704
111.	(<i>a</i>) 273258	(<i>b</i>) 273268			(<i>c</i>) 2704 (<i>e</i>) None of the
	(<i>u</i>) 273238 (<i>c</i>) 273348	(d) 273268 (d) 273358		104	The value of 1
110	(<i>c</i>) 273348 587 × 999 =?	<i>(u)</i> 273338		124.	(<i>a</i>) 6700
112.	(<i>a</i>) 586413	(<i>b</i>) 587523			(a) 6700 (c) 76500
	(<i>a</i>) 500415 (<i>c</i>) 614823	(d) 537523 (d) 615173		105	(<i>c</i>) 76500 Multiply 57463
112	(2) 014823 $3897 \times 999 =?$	<i>(u)</i> 015175		125.	(<i>a</i>) 718,290,102
115.	(<i>a</i>) 3883203	(<i>b</i>) 3893103			(<i>a</i>) 718,290,102 (<i>c</i>) 748,290,103
	(<i>a</i>) 3639403	(d) 3791203		126	935421 × 625 =
	(e) None of these	(<i>u</i>) 57 71205		120.	(<i>a</i>) 575648125
114	72519 × 9999 =?				$\begin{array}{c} (a) & 575048125 \\ (c) & 584649125 \end{array}$
114.	(<i>a</i>) 725117481	(b) 67421748	1	127	$(0)^{304049123}$ $(999)^2 - (998)^2$
	(<i>c</i>) 685126481	(d) 69621748		127.	(999) = (998) (a) 1992
	(<i>e</i>) None of these	(<i>u</i>) 09021740	1		(a) 1992 (c) 1997
115	$2056 \times 987 = ?$			179	$(80)^2 - (65)^2 +$
115.	(<i>a</i>) 1936372	(<i>b</i>) 2029272		120.	$(30)^{-} (03)^{-} +$ (a) 306
	(<i>a</i>) 1936372 (<i>c</i>) 1896172	$\begin{array}{c} (b) & 2029272 \\ (d) & 1923472 \end{array}$			(a) 500 (c) 2175
		<i>(u)</i> 1923472			(<i>e</i>) None of the
116	(e) None of these 1904 × 1904 =?			120	$(24 + 25 + 26)^{2}$
110.		(h) 2622646		129.	(24 + 25 + 20) (a) 352
	(a) 3654316	(<i>b</i>) 3632646			(<i>a</i>) 332 (<i>c</i>) 752
	(c) 3625216	(<i>d</i>) 3623436			(<i>e</i>) None of the
117	(e) None of these $1207 \times 1207 = 2$			130	$(65)^2 - (55)^2 = 3$
117.	$1397 \times 1397 =?$	(h) 1091700		130.	(05) - (05) -
	(a) 1951609	(<i>b</i>) 1981709			(a) 10 (c) 120
	(c) 18362619	(<i>d</i>) 2031719		121	If a and b be p
110	(e) None of these $107 \times 107 \times 02 \times 02$			131.	then the value
118.	$107 \times 107 + 93 \times 93 =?$	(h) 10410			(<i>a</i>) 9
	(a) 19578	(b) 19418			(<i>a</i>) 9 (<i>c</i>) 19
	(c) 20098	(<i>d</i>) 21908		132	If <i>a</i> and <i>b</i> are
110	(e) None of these 217 × 217 + 183 × 183 =?			101	$(a - b)^2 > 29$, t
119.			(R.R.B., 2007)		(<i>a</i>) 3
	(a) 79698	(<i>b</i>) 80578			(<i>c</i>) 6
	(c) 80698	(<i>d</i>) 81268		133.	$397 \times 397 + 10$
100	(e) None of these				(<i>a</i>) 250001
120.	$106 \times 106 - 94 \times 94 =?$	(1) 2000			(c) 260101
	(<i>a</i>) 2400	(b) 2000		134.	If $(64)^2 - (36)^2$
	(c) 1904	(<i>d</i>) 1906			(<i>a</i>) 70
	(e) None of these	2			(c) 180
121.	8796 × 223 + 8796 × 77 =				(e) None of th
	(<i>a</i>) 2736900	(<i>b</i>) 2738800			$(489 + 375)^2 -$
	(c) 2658560	(<i>d</i>) 2716740		135.	$\frac{(10)+070)}{(489\times)}$
	(e) None of these				(a) 144
122.	$287 \times 287 + 269 \times 269 - 2$		=?		(c) 2
	(<i>a</i>) 534	(b) 446			(e) None of the
	(c) 354	(<i>d</i>) 324		100	$(963 + 476)^2 +$
	(e) None of these			136.	(963×963+
123.	${(476 + 424)^2 - 4 \times 476 \times (1 + 222)^2}$				(<i>a</i>) 2
	(<i>a</i>) 2906	(<i>b</i>) 3116			

(*d*) 2904 hese 112×5^4 is (*b*) 70000 (*d*) 77200 6320819 by 125. 2,375 (b) 728,490,301,375 3,375 (d) 798,290,102,975 =? (b) 584638125 (d) 585628125 ² =? (R.R.B., 2008) (b) 1995 (d) 1998 + 81 =? (b) 2094 (*d*) 2256 hese $(5)^2 - (10 + 20 + 25)^2 =?$ (*b*) 400 (*d*) 2600 hese =? (*b*) 100 (d) 1200 positive integers such that $a^2 - b^2 = 19$, e of *a* is (S.S.C., 2010) (*b*) 10 (*d*) 20 positive integers, a > b and $(a + b)^2$ – then the smallest value of *a* is (*b*) 4 (*d*) 7 $.04 \times 104 + 2 \times 397 \times 104 =?$ (*b*) 251001 (d) 261001 $x^{2} = 20 \times x$, then x = ?(*b*) 120 (*d*) 140 hese - (489 – 375)² =? < 375) (b) 864 (*d*) 4 hese + (963 – 476)² =? + 476 × 476) (*b*) 4

20

	(c) 497	(<i>d</i>) 1449	146. Find the missing number in the following additio
	(e) None of these		problem:
	$768 \times 768 \times 768 + 232 \times 23$	2 × 232	8 3 5
137.	$\frac{768 \times 768 \times 768 + 232 \times 23}{786 \times 768 - 768 \times 232 + 23}$	$\frac{2 \times 232}{2 \times 232} = ?$	
	(<i>a</i>) 1000	(b) 536	+ 9 * 4 2 2 7
	(c) 500	(<i>d</i>) 268	
	(e) None of these	· · /	(a) 0 (b) 4
		6×276	(c) 6 (d) 9
138.	$\frac{854 \times 854 \times 854 - 276 \times 27}{854 \times 854 + 854 \times 276 + 27}$	$\frac{1}{76 \times 276} = ?$	147. What number should replace <i>M</i> in this multiplicatio problem?
	(<i>a</i>) 1130	(<i>b</i>) 578	3 M 4
	(c) 565	(<i>d</i>) 1156	× 4
	(e) None of these		1 2 1 6
		3×247	(a) 0 (b) 2
139.	$\frac{753 \times 753 + 247 \times 247 - 755}{753 \times 753 \times 753 + 247 \times 247}$	$\frac{7}{7 \times 247} = ?$	$ \begin{array}{c} (a) & c \\ (c) & 4 \\ (d) & 8 \end{array} $
			148. If p and q represent digits, what is the maximum
	(a) $\frac{1}{1000}$	(b) $\frac{1}{506}$	possible value of q in the statement (S.S.C., 2010)
		(d) Norre of these	5p9 + 327 + 2q8 = 1114?
	(c) $\frac{253}{500}$	(d) None of these	(a) 6 (b) 7 (c) 8 (c) 6 (c) 7 (c) 6 (c) 6 (c) 6 (c) 7 (c) 6 (c) 6
	$\frac{256 \times 256 - 144 \times 144}{112}$ is ea	1.	(c) 8 (d) 9 149. What would be the maximum value of Q in the
140.		qual to (S.S.C., 2010)	following equation?
	(<i>a</i>) 420	(<i>b</i>) 400	5P7 + 8Q9 + R32 = 1928
	(<i>c</i>) 360	(<i>d</i>) 320	(<i>a</i>) 6 (<i>b</i>) 8
141.		9, then the value of	
	$\left(\frac{a^2+b^2+ab}{a^3-b^3}\right)$ is	(S.S.C., 2010)	(e) None of these
	$\left(a^3 - b^3 \right)^{10}$	(0.0.0., 2010)	150. What should come in place of * mark in the followin equation?
	(a) $\frac{1}{2}$	(b) $\frac{1}{2}$	$1*5$4 \div 148 = 78$
	^(<i>u</i>) 2	(b) $\frac{1}{20}$	(<i>a</i>) 1 (<i>b</i>) 4
	(<i>c</i>) 2	(<i>d</i>) 20	(c) 6 (d) 8
142.	If $a + b + c = 0$, $(a + b)$ (_	(e) None of these
		(M.C.A., 2005)	
	(a) ab (a + b)	(b) $(a + b + c)^2$	come in place of *? (<i>a</i>) 4 (<i>b</i>) 6
	(c) - abc	$(d) a^2 + b^2 + c^2$	(a) Q (d) Cannot be determine
143.			
		then the value of $a^2 + b^2 + b^2$	+ I
	$c^2 - ab - bc - ca$ is		(e) None of these 152. What should be the maximum value of Q in the
	$c^2 - ab - bc - ca$ is (a) - 12	(b) 0	 (<i>e</i>) None of these 152. What should be the maximum value of <i>Q</i> in the following equation?
	$c^{2} - ab - bc - ca$ is (a) - 12 (c) 8	(<i>b</i>) 0 (<i>d</i>) 12	 (<i>e</i>) None of these 152. What should be the maximum value of <i>Q</i> in the following equation? 5<i>P</i>9 - 7<i>Q</i>2 + 9<i>R</i>6 = 823
	$c^{2} - ab - bc - ca$ is (a) - 12 (c) 8	(b) 0	(e) None of these 152. What should be the maximum value of Q in the following equation? Set $(a) 5$ (b) 6
	$c^{2} - ab - bc - ca$ is (a) - 12 (c) 8 Both addition and mult	(b) 0 (d) 12 iplication of numbers are	$\begin{array}{c c} $
	$c^2 - ab - bc - ca$ is (a) - 12 (c) 8 Both addition and mult operations which are (a) neither commutative (b) associative but not co	(b) 0 (d) 12 iplication of numbers are nor associative ommutative	$\begin{array}{c c} $
	$c^2 - ab - bc - ca$ is (a) - 12 (c) 8 Both addition and mult operations which are (a) neither commutative (b) associative but not co (c) commutative but not	(b) 0 (d) 12 iplication of numbers are nor associative ommutative associative	$\begin{array}{c c} $
144.	$c^2 - ab - bc - ca$ is (a) - 12 (c) 8 Both addition and mult operations which are (a) neither commutative (b) associative but not co (c) commutative but not (d) commutative and ass	(b) 0 (d) 12 iplication of numbers are nor associative ommutative associative ociative	(e) None of these (e) None of these (f) Vhat should be the maximum value of Q in the following equation? 5P9 - 7Q2 + 9R6 = 823 (a) 5 (b) 6 (c) 7 (d) 9 (e) None of these (f) Vone of these (f
144.	$c^2 - ab - bc - ca$ is (a) - 12 (c) 8 Both addition and mult operations which are (a) neither commutative (b) associative but not co (c) commutative but not (d) commutative and ass Which of the following	(b) 0 (d) 12 iplication of numbers are nor associative ommutative associative ociative digits will replace the <i>H</i>	(e) None of these (e) None of these (f) Vhat should be the maximum value of Q in the following equation? 5P9 - 7Q2 + 9R6 = 823 (a) 5 (b) 6 (c) 7 (d) 9 (e) None of these (f) Vone of these (f
144.	$c^2 - ab - bc - ca$ is (a) - 12 (c) 8 Both addition and mult operations which are (a) neither commutative (b) associative but not co (c) commutative but not (d) commutative and ass Which of the following marks in the following e	(b) 0 (d) 12 iplication of numbers are nor associative ommutative associative ociative digits will replace the <i>H</i>	$(e) \text{ None of these}$ $(e) \text{ None of these}$ $(f) \text{ What should be the maximum value of } Q \text{ in the following equation?}$ $(f) \text{ SP9} - 7Q2 + 9R6 = 823$ $(a) 5 \qquad (b) 6$ $(c) 7 \qquad (d) 9$ $(e) \text{ None of these}$ $(f) \text{ Solve of these}$
144.	$c^2 - ab - bc - ca$ is (a) - 12 (c) 8 Both addition and mult operations which are (a) neither commutative (b) associative but not co (c) commutative but not (d) commutative and ass Which of the following	(b) 0 (d) 12 iplication of numbers are nor associative ommutative associative ociative digits will replace the <i>H</i>	$(e) \text{ None of these}$ $(f) \text{ None of these}$ $(f) \text{ None of these}$ $(f) \text{ SP9} - 7Q2 + 9R6 = 823$ $(a) 5 \qquad (b) 6$ $(c) 7 \qquad (d) 9$ $(e) \text{ None of these}$ $(f) \text{ Some of these}$ $(f) Some $
144.	$c^2 - ab - bc - ca$ is (<i>a</i>) - 12 (<i>c</i>) 8 Both addition and mult operations which are (<i>a</i>) neither commutative (<i>b</i>) associative but not co (<i>c</i>) commutative but not co (<i>c</i>) commutative but not (<i>d</i>) commutative and ass Which of the following marks in the following e 9H + H8 + H6 = 230	(b) 0 (d) 12 iplication of numbers are nor associative ommutative associative ociative digits will replace the <i>H</i> equation?	+(e) None of these152. What should be the maximum value of Q in the following equation? $5P9 - 7Q2 + 9R6 = 823$ (a) 5(a) 5(b) 6 (c) 7(c) 7(d) 9 (e) None of these153. In the following sum, '?' stands for which digit? $? + 1? + 2? +? 3 +? 1 = 21?$ (a) 4(b) 6 (c) 8(c) 8(d) 9 (e) None of theseDirections (Questions 154–155): These questions are base on the following information:
144.	$c^2 - ab - bc - ca$ is (a) - 12 (c) 8 Both addition and mult operations which are (a) neither commutative (b) associative but not co (c) commutative but not (d) commutative and ass Which of the following marks in the following e 9H + H8 + H6 = 230 (a) 3	 (b) 0 (d) 12 iplication of numbers are nor associative ommutative associative ociative digits will replace the <i>H</i> equation? (b) 4 	$(e) \text{ None of these}$ $(f) \text{ None of these}$ $(f) \text{ None of these}$ $(f) \text{ SP9} - 7Q2 + 9R6 = 823$ $(a) 5 \qquad (b) 6$ $(c) 7 \qquad (d) 9$ $(e) \text{ None of these}$ $(f) \text{ Some of these}$ $(f) Some $

(a) 0 (b) 5 (c) 9 (d) 0 or 9 (d) 0 or 9 (e) 0 (f) 0 or 9 (f) 2 (f) 2 (g) 2 or 3 (f) 5 (f) A 3-digit number 4a3 is added to another 3-digit number 984 to give the four-digit number 1367 which is divisible by 11. Then, $(n + b)$ is (MLB., 2000 (g) 10 (b) 11 (g) 12 (c) 12 (c) 15 (f) 1, 2 (f) 12 (c) 15 (f) 1, 3 (f) None of these 18. * * * $\frac{x * *}{8 * * 1}$ In the above multiplication problem, * is equal to (a) 1 (b) 3 (c) 7 (d) 9 (f) 1, 2 (b) 2, 3 (g) 1, 3 (f) None of these 18. * * * $\frac{x * *}{8 * * 1}$ In the above multiplication problem, * is equal to (a) 21 (b) 3 (c) 7 (d) 9 (f) 14 * aeaas adding 6 times the second number to the first number, then (1 * 2) * 3 equals (a) 21 (b) 3 (c) 7 (c) 9 (f) 9 (f) 14 * aeaas adding 6 times the second number to the first number, then (1 * 2) * 3 equals (a) 21 (b) 3 (c) 6 × 8 × [6 (f) 7 × 8 × [7 (g) 21 (b) 22 (g) 12 (c) 6 × 8 × [6 (f) 7 × 8 × [7 (g) 12 (c) 6 × 8 × [6 (f) 7 × 8 × [6 (g) 12 (c) 6 × 8 × [6 (f) 7 × 8 × [6 (g) 12 (c) 6 × 8 × [6 (f) 7 × 8 × [6 (g) 12 (c) 6 × 8 × [6 (f) 7 × 8 × [6 (g) 12 (c) 2 (f) 2 (f) 22 (g) 10 (g) 12 (g) 10 (g) 24 (g) None of these 16. The highest power of 9 dividing 99! completely is (g) 11 (g) 22 (g) 22 (g) 24 (g) 12 (g) 24 (g) 14 (g) 15 (g) 24 (g) 24 (g) 14 (g) 16 (g) 24 (g) 17 × 8 × [6 (g) 16 (g) 24 (g) 17 × 8 × [6 (g) 16 (g) 24 (g) 18 (g) 16 (g) 24 (g) 18 (g) 16 (g) 24 (g) 18 (g) 16 (g) 24 (g) 18 (g) 16 (g) 26 (g) 26 (g) 26 (g) 27 (g) 26 (g) 26	154.	<i>B</i> takes the value			(a) 495	(<i>b</i>) 545
(i)(j)(j)(j)(j)(j)(j)155.C takes the value(i)(i)(j)(101		(<i>b</i>) 5		()	
155. C takes the value (a) 0 (b) 2 (c) 2 or 3 (d) 5a 3-digit number 4a3 is added to another 3-digit number 984 to give the four-digit number 13b7, which is divisible by 11. Then, $(a + b)$ is (M.B.A, 2006) (a) 10 (b) 11 (c) 12 (c) 12 (d) 15a subtracted (d) 7 (f) 12 (g) 12 (g) 15a subtracted (h) 7 (h) 12 (c) 12 (h) 14a sum which is greater than when it is multiplied by 100. This positive integer is (h) 7 (h) 15157. If is added to another 3-digit (h) 12 (h) 12 (h) 12 (h) 12 (h) 14 (h) 13a sum which is greater than when it is multiplied by 100. This positive integer is (h) 7 (h) 16 (h) 20 (h) 20 (h) 20 (h) 20 (h) 21 (h) 204 (h) 214159. If it means adding 6 times the second number to the (h) 210 (h) 211 (h) 211 (h) 211 (h) 212 (h) 214 (h) 21				166.		
(c) 0 (c) 2 or 3 (c) 15 (c) 10 (c) 15 (c) 12 (c) 11 (c) 15 (c) 12 (c) 11 (c) 11 (c) 12 (c) 13 (c) 12 (c) 13 (c) 12 (c) 13 (c) 12 (c) 13 (c) 12 (c) 14 (c) 1 2 (c) 12 (c) 13 (c) 1 2 (c) 12 (c) 13 (c) 1 2 (c) 2 13 (c) 1 2 (c) 2 13 (c) 15 (c) 1 2 (c) 2 13 (c) 10 (c) 13 (c) 1 2 (c) 2 13 (c) 10 (c) 13 (c) 1 3 (c) 10 (c) 13 (c) 1 3 (c) 10 (c) 2 3 (c) 40 (c) 2 3 (c) 40 (c) 30 (c) 40 (c) 2 0 (c) 30 (c) 40 (c) 2 (c) 40 (c) 2 (c) 40 (c) 30 (c) 40 (c) 2 (c) 40 (c) 30 (c) 2 (c) 40 (c) 2 (c) 40 (c) 40 (c) 2 (c) 40 (c) 2 (c) 40 (c) 40 (c) 2 (c) 40 (c) 2 (c) 40 (c) 40 (c) 2 (c) 40 (c) 2 (c) 40 (c) 40 (c) 2 (c) 40 (c) 2 (c) 40 (c) 40 (c) 2 (c) 40 (c) 40 (c) 40 (c) 2 (c) 40 (c) 40 (c) 40 (c) 2 (c) 40 (c) 40 (c) 10 (c) 113 (c) 40 (c) 40 (c) 40 (c) 2 (c) 40 (c) 40 (c) 40	155.					
(i) 2 or 3 (i) 5 (i) 1 (i) 5 (i) 1 (i) 7 (i) 7 (i) 1 (i) 1 (i) 1 (i) (i) 113 (i) 1 (i) (i) 113	1000		(h) 2			
156. A 3-dight number 4/3 is added to another 3-dight number 984 to give the four-dight number 13/57, which is divisible by 11. Then, (a + b) is (M.B.A.2000) (a) 10 (b) 11 (b) 12 (c) 12 (c) 12 (d) 15 (e) 12 (d) 15 (e) 12 (f) 12 (g) 12 (-
number 984 to give the four-digit number 1377 which is divisible by 11. Then, $(a + b)$ is (MBA.2006 (a) 10 (b) 11 (c) 12 (d) 15 157. If ab [252] ba , the values of a and b are (LAM.2007) $\frac{24}{12}$ (a) 1. 2 (b) 2, 3 (c) 1, 3 (d) None of these 158. * * * (a) 1. 2 (b) 2, 3 (c) 1, 3 (d) None of these 158. * * * (a) 1. 2 (b) 2, 3 (c) 1, 3 (d) None of these 158. * * * (a) 1 (b) 3 (c) 1, 3 (d) None of these 158. * * * (a) 1 (b) 3 (c) 7 (d) 9 159. If * means adding 6 times the second number to the first number, then (1 * 2) * 3 equals (a) 2 (d) 2 (d) 2 4 (c) 7 (d) 9 159. If * means adding 6 times the second number to the first number, then (1 * 2) * 3 equals (a) 2 (c) 4 (d) 2 14 (c) 14 (c) 3 1 (c) 9 (d) 6 (d) 9 160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $\lfloor n$, then $\lfloor 8 - \lfloor 7 - \lfloor 6 \rfloor$ is equal to (a) $6 \times 7 \times \lfloor 8 - \lfloor 6 \rfloor$ (d) $7 \times 8 \times \lfloor 7 \rfloor$ (b) $7 \times 8 \times \lfloor 6 - \lfloor 1 \rfloor$ (c) 2 1 (c) 2 (d) 2 4 (c) 12 (d) 2 14 (c) 12 (d) 2 14 (c) 13 (d) 1 (b) 20 (c) 2 (d) 2 4 (c) 11 (b) 20 (c) 2 (d) 2 4 (c) 11 (b) 20 Then, $1! + 2! + 3! + \dots + 100!$ when divided by 5 leaves remainder (a) 0 (b) 11 (c) 2 (d) 2 (d) 2 4 (c) 12 (d) 2 (d)	156					
which is divisible by 11. Then, $(a + b)$ is (M.B.A., 2009) (a) 10 (b) 11 (c) 12 (c) 12 (c) 15 157. If $ab [\overline{252}] ba$, the values of a and b are (LA.M., 2007) $\frac{24}{12}$ (a) 1.2 (b) 2, 3 (c) 1, 3 (c) None of these (c) 7 (c) 4 (d) 9 159. If * means adding 6 times the second number to the first number, then (1*2) * 3 equals (a) 21 (b) 31 (c) 7 (c) 4) 9 160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $[\underline{n}$, then $[\underline{8} - \underline{Z} - \underline{6}$ is equal to (c) $6 \times 7 \times \underline{8}$ (b) $7 \times 8 \times \underline{7}$ (c) $6 \times 8 \times \underline{6}$ (d) $7 \times 8 \times \underline{7}$ (c) 22 (d) 24 161. The highest power of 9 dividing 99! completely is (a) 11 (b) 20 (c) 22 (d) 24 162. For an integer $n, n! = n(n - 1)$ $(n - 2)$	150.			167.		
(a) 10 (b) 11 (c) 12 (d) 15 (c) 12 (d) 15 (c) 12 (d) 15 (c) 12 (d) 15 (c) 13 (d) None of these (c) 1, 3 (d) None of these (c) 1, 4 (d) None of these (c) 21 (d) 2 (c) 1, 4 (d) 9 (c) 1, 4 (d) 9 (c) 1, 4 (d) 9 (c) 1, 5 (d) 7 × 8 × [2 (c) 6 × 8 × [6] (d) 7 × 8 × [2 (c) 6 × 8 × [6] (d) 7 × 8 × [2 (c) 12 (d) 24 (c) 12 (d) 11, and so on. She counted upto 1994. She ended on her (d) 1 (b) 20 (c) 22 (d) 24 (f) None of these 17. Given $n = 1 + x$ and x is the product of four consecutive verset direction, calling the function $(0, 5, 7^{(r)}, 11^{(r)})$ is equal to (d) 0 (b) 1 (e) 22 (d) 3 163. The number of prime factors in the expression (d) 0, 71 (d) 81 (d) 4Mut is the number of prime factors contained in (d) 10 (b) 113 (d) 10 (b) 113						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
157. If $ab \frac{252}{252} ba$, the values of a and b are (LAM, 2007)(a) 23 (b) 30 (a) $1, 2$ (b) $2, 3$ (c) 40 (d) 60 (a) $1, 2$ (b) $2, 3$ (c) $1, 3$ (d) None of these(b) $1, 3$ (d) None of these(c) $1, 3$ (d) 30 (c) 40 (c) 2450 (c) 7500 (d) 7510 (c) 7 (d) 9 (e) 31 (f) 31 (c) 31 (c) 31 (c) 160 (b) 214 (c) 212 (d) 214 (f) 214 (f) 214 (f) 216 (g) 214 (g) 214 (g) 314 (g) 1160 (f) $7 \times 8 \times [6]$ (a) $11 $ (b) 20 (c) $6 \times 8 \times [6]$ (d) $7 \times 8 \times [6]$ (c) $7 \times 8 \times [6]$ (d) $7 \times 8 \times [6]$ (c) 150 The highest power of 9 dividing 99! completely is (a) 11 (b) 20 (c) 22 (d) 24 (c) 152 Then, $1! + 2! + 3! + + 100! when divided by5 leaves remainder(a) 0 (b) 1 (c) 22 (d) 31(c) 71 (d) 81(d) 64 (f) 711 (d) 81(d) 64 (f) 711 (d) 81(e) 711 (d) 81(f) 711 (d) 81$						
$\frac{24}{12}$ $\frac{12}{2}$	157.	()			(<i>a</i>) 20	(<i>b</i>) 30
$\frac{12}{x}$ At the end of running the first programme, is total takings were ₹ 38950. There were more than 45 but less than 100 participants. What was the participant the first programme, is total takings were ₹ 38950. There were more than 45 but less than 100 participants. What was the participant $(a, 1, 3, (a, 1), (a, 2), (b, 2), (a, 3), (a, 3), (a, 1), (a, 2), (b, 3), (a, 1), (b, 3), (c, 2), (a, 3), (b, 3), (c, 3), (c, 4), (c, 4),$					(c) 40	(<i>d</i>) 60
(a) 1, 2 (b) 2, 3 (c) 1, 3 (d) None of these 158. * * * $x \times *$ 158. * * * $x \times *$ 159. If the above multiplication problem, * is equal to (a) 1 (b) 3 (c) 7 (c) 4) 9 159. If * means adding 6 times the second number to the first number, then (1 * 2) * 3 equals (a) 21 (b) 31 (c) 91 (c) 93 (c) 11 (c) 93 (d) 93 160. If 1 × 2 × 3 × × n is denoted by $ \underline{n} $, then $ \underline{8} - \underline{7} - \underline{6} $ is equal to (a) $6 \times 7 \times \underline{8} $ (b) $7 \times 8 \times \underline{5} $ 161. The highest power of 9 dividing 99! completely is (a) 21 (b) 20 (c) 22 (c) 24 162. For an integer n, n! = n(n - 1) (n - 2), 3.2.1. (P.C.S. 2008) Then, 1! + 2! + 3! + + 100! when divided by 5 leaves remainder (a) 0 (b) 1 (c) 2 (c) 3 163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to (a) 54 (b) 64 (c) 71 (c) 81 164. What is the number of prime factors contained in (a) 100 (b) 113 (b) 64 (c) 71 (c) 81 165. What is the number of prime factors contained in (b) 64 (c) 71 (c) 81 166. What is the number of prime factors contained in (c) 71 (c) 81 166. What is the number of prime factors contained in (a) 10 (b) 113 (b) 113 (c) 2 (c) 71 (c) 81 166. What is the number of prime factors contained in (c) 71 (c) 91 (c) 71 (c)				168.	Symbiosis runs a Corpor	ate Training Programme.
(a) $1, 2$ (b) $2, 3$ (c) $1, 3$ (c) None of these (c) $1, 3$ (c)						
(c) 1, 3 (d) None of these (c) 1, 3 (d) None of these (c) 1, 3 (d) None of these (c) 1 (c) 7 (c) 3 (c) 7 (c) 9 (c) 7 (c) 9 (c) 1 (c)		(a) 1, 2	(b) 2. 3			
158. $* * * *$ $\underline{8 * * 1}$ Iter for the formulation of the second number of the second number of the second number to the first number, then $(1 * 2) * 3$ equals $(a) 21$ $(b) 31$ $(c) 91$ $(d) 93$ 169. The sum of four consecutive even numbers A, B, C and D is 180. What is the sum of the set of next four consecutive even numbers A, B, C and D is 180. What is the sum of the set of next four consecutive even numbers A, B, C and D is 180. What is the sum of the set of next four consecutive even numbers A, B, C and D is 180. What is the sum of the set of next four consecutive even numbers A, B, C and D is 180. What is the sum of the set of next four consecutive even numbers A, B, C and D is 180. What is the sum of the set of next four consecutive even numbers A, B, C and D is 180. What is the sum of the set of next four consecutive even numbers A, B, C and D is 180. What is the sum of the set of next four consecutive even numbers A, B, C and D is 180. What is the number of prime factors in the expression $(a) 54$ ($b) 64$ ($c) 22$ ($d) 24$ 164. What is the number of prime factors contained in ($c) 71$ ($d) 81$ 164. What is the number of prime factors contained in						
$ \begin{array}{c} \times & \ast \\ \hline \\ 8 & \ast & \ast \\ \hline \\ 8 & \ast & \ast \\ \hline \\ 8 & \ast & \ast & 1 \\ \hline \\ In the above multiplication problem, * is equal to (a) 1 (b) 3 (c) 7 (c) (c$	158.					
($c \in 5.00$ ($d \in 5.10$ ($d = 5.10$ ($d = 1$ ($d = 1$ ($d = 1$ ($d = 2$ <	100.		× *			
In the above multiplication problem, * is equal to (a) 1 (b) 3 (c) 7 (d) 9 159. If * means adding 6 times the second number to the first number, then $(1 * 2) * 3$ equals (a) 21 (b) 31 (c) 91 (d) 93 160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $ \underline{n} $, then $ \underline{8} - \underline{7} - \underline{6} $ is equal to (a) $6 \times 7 \times \underline{8} $ (b) $7 \times 8 \times \underline{7} $ (c) $6 \times 8 \times \underline{6} $ (d) $7 \times 8 \times \underline{6} $ 161. The highest power of 9 dividing 99! completely is (a) 11 (b) 20 (c) 22 (d) 24 162. For an integer $n, n! = n(n - 1) (n - 2)$, 3.2.1. (P.C.S., 2008) Then, $1! + 2! + 3! + \dots + 100!$ when divided by 5 leaves remainder (a) 0 (b) 1 (c) 2 (d) 3 163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to (a) 54 (b) 64 (c) 71 (d) 81 164. What is the number of prime factors contained in						
in the above multiplication problem, is equal to (a) 1 (b) 3 (c) 7 (d) 9 (a) 1 (b) 31 (c) 91 (d) 93 160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $ \underline{n} $, then $ \underline{8} - \underline{7} - \underline{6} $ is equal to (a) $6 \times 7 \times \underline{8} $ (b) $7 \times 8 \times \underline{7} $ (c) $6 \times 8 \times \underline{6} $ (d) $7 \times 8 \times \underline{6} $ 161. The highest power of 9 dividing 99! completely is (a) 11 (b) 20 (c) 22 (d) 24 162. For an integer $n, n! = n(n-1) (n-2)$ 3.2.1. (P.C.S., 2008) Then, $1! + 2! + 3! + \dots + 100!$ when divided by 5 leaves remainder (a) 0 (b) 1 (c) 22 (d) 3 163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to (a) 54 (b) 64 (c) 71 (d) 81 164. What is the number of prime factors contained in (a) 10 (b) 113 (b) 64 (c) 71 (c) 123 (c) 71 (c) 113 (c) 71 (c) 113		0	<u> </u>	169.		
(a) 1(b) 3(c) 7(d) 9159. If * means adding 6 times the second number to the first number, then $(1 * 2) * 3$ equals(a) 21(b) 31(c) 91(d) 93160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $ \underline{n} $, then $ \underline{8} - \underline{7} - \underline{6} $ is equal to(a) $6 \times 7 \times \underline{8} $ (b) $7 \times 8 \times \underline{7} $ (c) $6 \times 8 \times \underline{6} $ (d) $7 \times 8 \times \underline{6} $ 161. The highest power of 9 dividing 99! completely is (a) 11(b) 20(c) 22(d) 24162. For an integer $n, n! = n(n-1)$ $(n-2)$ 3.2.1. (P.C.S., 2008)Then, $1! + 2! + 3! + \dots + 100!$ when divided by 5 leaves remainder(a) 0(b) 1 (c) 2(a) 0(b) 1 (c) 2(a) 1(b) 64 (c) 71(c) 71(d) 381163. The number of prime factors in the expression (a) 54 (b) Conjult Ii scorrect(c) 71(d) 81164. What is the number of prime factors contained in		In the above multiplication	· ·			
(c) 7 (c) 7 (c) 9 159. If * means adding 6 times the second number to the first number, then $(1 \times 2) \times 3$ equals $(a) 21$ $(b) 31$ $(c) 91$ $(d) 93$ (b) 31 $(c) 91$ $(d) 93$ 160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $ \underline{n} $, then $ \underline{8} - \underline{7} - \underline{6} $ is equal to $(a) 6 \times 7 \times \underline{8} $ $(c) 6 \times 8 \times \underline{6} $ $(d) 7 \times 8 \times \underline{7} (c) 6 \times 8 \times \underline{6} (d) 7 \times 8 \times \underline{6} 170. A young girl counted in the following way on thefingers of her left hand. She started calling the thumb1, the index finger 2, middle finger 3, ring finger 4,hittle finger 5, then reversed direction, calling thering finger 6, middle finger 7, index finger 8, thumb9 and then back to the index figure for 10, middlefinger for 11, and so on. She counted upto 1994. Sheended on her161. The highest power of 9 dividing 99! completely is(a) 11(b) 20(c) 22(d) 24162. For an integer n, n! = n(n - 1) (n - 2)(P.C.S., 2008)Then, 1! + 2! + 3! + \dots + 100! when divided by5 leaves remainder(a) 0(b) 1(c) 2(d) 3163. The number of prime factors in the expression6^{10} \cdot 7^{17} \cdot 11^{27} is equal to(a) 54(b) 64(c) 71(d) 81164. What is the number of prime factors contained in(a) 110165. What is the number of prime factors contained in(a) 81$						
13.9.1Intention adding of times the sector infinite to the first number, then $(1 * 2) * 3$ equals $(a) 21$ $(b) 31$ $(c) 91$ $(d) 93$ 160. If $1 * 2 \times 3 \times \dots \times n$ is denoted by $ \underline{n}$, then $ \underline{8} - \underline{7} - \underline{6}$ is equal to $(a) 6 \times 7 \times \underline{8} (b) 7 \times 8 \times \underline{7} (c) 6 \times 8 \times \underline{6} (d) 7 \times 8 \times \underline{6} 170. A young girl counted in the following way on thefingers of her left hand. She started calling the thumb1, the index finger 2, middle finger 3, ring finger 4,little finger 5, then reversed direction, calling thering finger 6, middle finger 7, index finger 8, thumb9 and then back to the index finger 6 in 10, middlefinger for 11, and so on. She counted upto 1994. Sheended on her(a) 11(b) 20(c) 22(d) 24171. Given n = 1 + x and x is the product of fourconsecutive integers. Then which of the followingis true?162. For an integer n, n! = n(n - 1) (n - 2)$						
Instrument, first (1 - 2) - b equals(a) 21(b) 31(c) 91(d) 93160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $ \underline{n}$, then $ \underline{8} - \underline{7} - \underline{6} $ is equal to(a) $6 \times 7 \times \underline{8} $ (b) $7 \times 8 \times \underline{7} $ (c) $6 \times 8 \times \underline{6} $ (d) $7 \times 8 \times \underline{6} $ (f) $1 + 2! + 3! + \dots + 10!$ when divided by(g) $0 + 1! + 2! + 3! + \dots + 100!$ when divided by(g) $0 + (b) 1$ (g) $0 + (b) 1$ (h) $0 + (b) 64$ (h) $0 + (b) 113$ (h) $0 + (b) 113$	159.					(<i>u</i>) 214
fingers of her left hand. She started calling the thumb 1, the index finger 2, middle finger 3, ring finger 4, little finger 5, then reversed direction, calling the mumb 1, the index finger 2, middle finger 3, ring finger 4, little finger 5, then reversed direction, calling the mumb 1, the index finger 2, middle finger 3, ring finger 4, little finger 5, then reversed direction, calling the mumb 9 and then back to the index figure for 10, middle finger for 11, and so on. She counted upto 1994. She ended on her (a) 11 (b) 20 (c) 22 (d) 24 162. For an integer n, $n! = n(n - 1) (n - 2)$			-	170		the following way on the
(i) y_1 (ii) y_2 160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $[\underline{n}$, then $ \underline{8} - \underline{7} - \underline{6} $ is equal to $ \underline{8} - \underline{7} - \underline{6} $ is equal to $(a) 6 \times 7 \times \underline{8} $ (b) $7 \times 8 \times \underline{7} $ $(a) 6 \times 7 \times \underline{8} $ (b) $7 \times 8 \times \underline{6} $ 161. The highest power of 9 dividing 99! completely is $(a) 11$ (b) 20 $(c) 22$ (d) 24 162. For an integer $n, n! = n(n-1)$ $(n-2)$ Then, $1! + 2! + 3! + \dots + 100!$ when divided by 5 leaves remainder $(a) 0$ (b) 1 $(c) 2$ (d) 3163. The number of prime factors in the expression $(a) 54$ (b) 64 $(c) 71$ (d) 81(c) 711(d) 81(a) 54(b) 64 $(c) 711$ (d) 81(a) 54(b) 64(c) 711(d) 81(a) 54(b) 64(c) 711(d) 81(d) 81				1/0.		
160. If $1 \times 2 \times 3 \times \dots \times n$ is denoted by $[\underline{n}]$, then $ \underline{8} - \underline{7} - \underline{6} $ is equal toIttle finger 5, then reversed direction, calling the ring finger 6, middle finger 7, index finger 8, thumb 9 and then back to the index figure for 10, middle finger for 11, and so on. She counted upto 1994. She ended on her161. The highest power of 9 dividing 99! completely is $(a) 11 (b) 20$ $(c) 22 (d) 24$ (b) $(a) \times 8 \times \underline{6} $ 162. For an integer $n, n! = n(n-1)$ $(n-2)$						
$ \underline{8} - \underline{7} - \underline{6} $ is equal toring finger 6, middle finger 7, index finger 8, thumb $(a) 6 \times 7 \times \underline{8} $ $(b) 7 \times 8 \times \underline{7} $ $(c) 6 \times 8 \times \underline{6} $ $(d) 7 \times 8 \times \underline{6} $ 161. The highest power of 9 dividing 99! completely is $(a) 11$ $(b) 20$ $(c) 22$ $(c) 22$ $(d) 24$ 162. For an integer $n, n! = n(n-1)$ $(n-2)$ 3.2.1. $(P.C.S., 2008)$ Then, $1! + 2! + 3! + \dots + 100!$ when divided by 5 leaves remainder $(a) 0$ $(b) 1$ $(c) 22$ $(d) 3$ 163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to $(a) 54$ $(b) 64$ $(c) 71$ $(d) 81$ 164. What is the number of prime factors contained in	160.		is denoted by $[\underline{n}]$, then			
finger for 11, and so on. She counted upto 1994. She ended on her (a) 11 (b) 20 (c) 22 (d) 24 162. For an integer n , $n! = n(n - 1)$ $(n - 2)$ 3.2.1. (P.C.S., 2008) Then, $1! + 2! + 3! + + 100!$ when divided by 5 leaves remainder (a) 0 (b) 1 (c) 2 (d) 3 The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to (a) 54 (b) 64 (c) 71 (d) 81 164. What is the number of prime factors contained in (b) 113 (c) $2 + y^2$? (L.I.C.A.D.O., 2007) (a) 110 (b) 113		8 - 7 - 6 is equal to				
(c) $6 \times 8 \times \underline{6}$ (d) $7 \times 8 \times \underline{6}$ finger for 11, and so on. She counted upto 1994. She ended on her161. The highest power of 9 dividing 99! completely is (a) 11(b) 20(a) thumb(b) index finger(c) 22(d) 24(c) 24(c) an integer n, n! = n(n - 1) (n - 2)		(a) $6 \times 7 \times 8 $	(b) $7 \times 8 \times \overline{7} $			
161. The highest power of 9 dividing 99! completely is (a) 11 (b) 20 (c) 22(b) 20 (c) 24162. For an integer $n, n! = n(n-1)$ $(n-2)$						ne counted upto 1994. She
(a) 11 (b) 20 (c) 14 (c) middle finger (d) ring finger (c) 22 (d) 24 (c) middle finger (d) ring finger 171. Given $n = 1 + x$ and x is the product of four consecutive integers. Then which of the following is true? 171. Given $n = 1 + x$ and x is the product of four consecutive integers. Then which of the following is true? 171. Given $n = 1 + x$ and x is the product of four consecutive integers. Then which of the following is true? 172. In is a perfect square. (a) 0 (b) 1 (c) 2 (d) 3 163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to (a) 54 (b) 64 (c) 71 (d) 81 164. What is the number of prime factors contained in (d) Both I and III are correct (a) 10 (b) 113						
(c) 22(d) 24162. For an integer $n, n! = n(n-1)$ $(n-2)$	161.	· ·			()	0
162. For an integer $n, n! = n(n-1) (n-2)$				4 24	•	
(P.C.S., 2008) Then, $1! + 2! + 3! + \dots + 100!$ when divided by 5 leaves remainder (a) 0 (b) 1 (c) 2 (d) 3 163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to (a) 54 (b) 64 (c) 71 (d) 81 164. What is the number of prime factors contained in (P.C.S., 2008) I. <i>n</i> is an odd integer. II. <i>n</i> is prime. II. <i>n</i> is a perfect square. (a) Only I is correct (b) Only III is correct (c) Both I and II are correct (d) Both I and III are correct 172. If $x + y = 15$ and $xy = 56$, then what is the value of $x^2 + y^2$? (L.I.C.A.D.O., 2007) (a) 110 (b) 113	4.6			171.		-
Then, $1! + 2! + 3! + \dots + 100!$ when divided by 5 leaves remainder(a) 0(b) 1(c) 2(d) 3163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to(a) 54(b) 64(b) 64(c) 71(d) 81164. What is the number of prime factors contained in(a) 10(b) What is the number of prime factors contained in(b) Chly III is correct(c) 71(d) 81(c) 71(d) 81(c) 71(b) 64(c) 71(c) 71(c) 71(c) 81(c) 71(c)	162.	For an integer n , $n! = n(n)$			<u> </u>	it which of the following
5 leaves remainderIII. n is a perfect square.(a) 0(b) 1(c) 2(d) 3163. The number of prime factors in the expression(a) Only I is correct $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to(b) Only III is correct(a) 54(b) 64(c) 71(d) 81164. What is the number of prime factors contained in(a) 110(b) 113		Then $11 + 21 + 31 + 31$				II n is prime
(a) 0(b) 1(a) Only I is correct(c) 2(d) 3(b) Only II is correct163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to(a) Only II is correct(a) 54(b) 64(c) 71(d) 81164. What is the number of prime factors contained in(a) Only I is correct(a) 54(b) 64(c) 71(d) 81164. What is the number of prime factors contained in(a) Only I is correct			+ 100: when divided by		*	
(c) 2(d) 3(b) Only III is correct163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to (a) 54(b) Only III is correct(a) 54(b) 64(c) 71(c) 71(d) 81164. What is the number of prime factors contained in(a) 110(b) Only III is correct(b) Only III is correct(c) 71(c) 80(c) 71(c) 81(c) 72(c) 81			(<i>h</i>) 1			
163. The number of prime factors in the expression $6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to (a) 54 (c) 71(b) 64 (c) 71(c) 80th I and II are correct (d) Both I and III are correct 164. What is the number of prime factors contained in(c) 80th I and III are correct (d) 81 172. If $x + y = 15$ and $xy = 56$, then what is the value of $x^2 + y^2$? (LI.C.A.D.O., 2007) 164. What is the number of prime factors contained in(a) 110(b) 113						
$6^{10} \cdot 7^{17} \cdot 11^{27}$ is equal to(d) Both I and III are correct(a) 54(b) 64(c) 71(d) 81164. What is the number of prime factors contained in(a) 110(b) 64(b) 64(c) 71(c) 81(c) 72 <t< td=""><td>163.</td><td></td><td></td><td></td><td>•</td><td>ect</td></t<>	163.				•	ect
(a) 54 (b) 64 (c) 71 (d) 81 164. What is the number of prime factors contained in 172. If $x + y = 15$ and $xy = 56$, then what is the value of $x^2 + y^2$? (LI.C.A.D.O., 2007) (a) 110 (b) 64 (b) 64 (c) 71 (c) 81 (c) 71 (c) 81 (c) 71 (c) 81 (c) 71 (c) 81 (c) 71 (c) 113	2001					
(c) 71(d) 81 $x^2 + y^2$?(L.I.C.A.D.O., 2007) 164. What is the number of prime factors contained in(a) 110(b) 113		*	(<i>b</i>) 64	172.		
164. What is the number of prime factors contained in (a) 110 (b) 113						
	164.				ç	
(c) 121 (a) Cannot be determined		the product $30^7 \times 22^5 \times 3$			(c) 121	(<i>d</i>) Cannot be determined
(a) 49 (b) 51 (e) None of these		*				
(c) 52 (d) 53 173. Given that $(1^2 + 2^2 + 3^2 + + 20^2) = 2870$, the value		(c) 52		173.	Given that $(1^2 + 2^2 + 3^2 + .)$	
165. What number multiplied by 48 will give the same of $(2^2 + 4^2 + 6^2 + \dots + 40^2)$ is	165.	What number multiplied	by 48 will give the same			
product as 173 multiplied by 240? (a) 2870 (b) 5740		-			(<i>a</i>) 2870	(<i>b</i>) 5740
(c) 11480 (d) 28700				I	(c) 11480	(<i>d</i>) 28700

174.	The value of $5^2 + 6^2 +$ (<i>a</i>) 755	(<i>b</i>) 760	186.		, 98, 100 are multiplied r of zeros at the end of the	
185	(c) 765	(<i>d</i>) 770		(<i>a</i>) 10	(<i>b</i>) 11	
175.	Given that $1 + 2 + 3 + 4$. ,	(d) 13	
	sum 6 + 12 + 18 + 24 + .	-	107	(c) 12 Let \mathcal{L} be the set of r		
	(a) 300	(<i>b</i>) 330	10/.	87. Let <i>S</i> be the set of prime numbers greater the or equal to 2 and less than 100. Multiply all the set of		
170	(c) 455	(d) 655 2^m 2^n			now many consecutive zeros	
1/6.	If m and n are natural nu			will the product end?		
	960, what is the value of			(<i>a</i>) 1	(<i>b</i>) 4	
	(<i>a</i>) 10 (<i>c</i>) 15	(<i>b</i>) 12		(a) 1 (c) 5	(d) 10	
	(d) Cannot be determined	I	199		eros at the end of the result	
177	On multiplying a number		100.	$3 \times 6 \times 9 \times 12 \times 15 \times 12 \times 12$		
1//.		he smallest such number		(a) 4	(<i>b</i>) 6	
	is	(C.P.O., 2006)		(u) = (c) 7	(d) 10	
	(<i>a</i>) 47619	(b) 46719	100	The unit's digit of 13 ²⁰		
	(c) 48619	(d) 47649	109.	_		
178.	The number of digits in th			(a) 1	(b) 3	
	when multiplied by 7 yie		100	(c) 7 The disit is the cosit!	(d) 9	
	(<i>a</i>) 3	(b) 4	190.	is	s place of the number 123 ⁹⁹	
	(c) 5	(<i>d</i>) 6		-	(I.A.M., 2007)	
179.	A boy multiplies 987 b			(a) 1	(b) 4	
		wer. If in the answer both	101	(c) 7 Match List Lwith List II	(d) 8	
	9's are wrong but the oth	er digits are correct, then	191.		I and select the correct answer:	
	the correct answer will be	e		List I	List II (Digit in the anitic place)	
	(<i>a</i>) 553681	(<i>b</i>) 555181		(Product)	(Digit in the unit's place)	
	(c) 555681	(<i>d</i>) 556581		A. $(1827)^{16}$	(1) 1 (2) 2	
180.	The numbers 1, 3, 5,,			B. $(2153)^{19}$	(2) 3	
	The number of zeros at th	e right end of the product		C. (5129) ²¹	(3) 5	
	is	(R.R.B., 2006)			(4) 7	
	(<i>a</i>) 0	(b) 1			(5) 9	
	(<i>c</i>) 2	(<i>d</i>) 3		A B C	A B C	
181.	The numbers 1, 2, 3, 4,			(a) 1 4 3	(b) 4 2 3	
		zeros at the end (on the		ABC	A B C	
	right) of the product mus		100	(c) 1 4 5	(d) 4 2 5	
	(a) 30	(b) 200	192.		place of the number $(67)^{25} - 1$	
100	(c) 211	(<i>d</i>) 249		must be		
182.	First 100 multiples of 10 i			(a) 0	(b) 6	
		he number of zeros at the	100	(c) 8	(<i>d</i>) None of these	
	end of the product will b		193.		product 274 × 318 × 577 × 313	
	(a) 100	(b) 111 (d) 125		1S	(h) 2	
100	(c) 124 The number of source of t	(d) 125		(a) 2	(b) 3 (d) 5	
183.	The number of zeros at the formula $10 \times 10 \times 20 \times 25 \times 10^{-10}$	-	104	(c) 4 In the product 450×4		
	$5 \times 10 \times 15 \times 20 \times 25 \times 3$		194.	-	$6 \times 28^* \times 484$, the digit in the	
	(a) 5	(b) 7		(<i>a</i>) 3	git to come in place of * is	
104	(<i>c</i>) 8	(d) 10			(b) 5 (d) None of these	
184.	The number of zeros at t		105	(c) 7 The digit in the unit pla	(<i>d</i>) None of these	
	(a) 12	(b) 14	195.	by $(7^{95} - 3^{58})$ is	ace of the number represented	
10-	(c) 16	(<i>d</i>) 18			(h) 4	
185.	The numbers 1, 3, 5, 7			(a) 0	(b) 4	
		number of zeros at the end	106	(c) 6 Unit's digit in $(784)^{126}$	(d) 7 $(784)^{127}$ is	
	of the product must be	(h) 7	190.	Unit's digit in $(784)^{126}$		
	(a) Nil	(b) 7		(<i>a</i>) 0 (<i>c</i>) 6	(b) 4 (d) 8	
	(c) 19	(<i>d</i>) 22			(11) 0	

22

197.	The digit in the unit's pl $(106)^{100} + (705)^{35} - 16^4 + 1000$	lace of $[(251)^{98} + (21)^{29} - 259]$ is	208.	Which of the following n 18?	umbers is not divisible by
	(<i>a</i>) 1	(<i>b</i>) 4		(<i>a</i>) 34056	(<i>b</i>) 50436
	(c) 5	(<i>d</i>) 6		(c) 54036	(<i>d</i>) 65043
198.	The digit in the unit's place $\times (615)^{317} \times (131)^{491}$ is	ce of the product (2464) ¹⁷⁹³	209.	The number 89715938* is d non-zero digit marked as	ivisible by 4. The unknown 5 * will be
	<i>(a)</i> 0	(<i>b</i>) 2		(<i>a</i>) 2	(<i>b</i>) 3
	(c) 3	(<i>d</i>) 5		(c) 4	(<i>d</i>) 6
199.	If <i>x</i> is an even number, the integer, will always have	en x^{4n} , where <i>n</i> is a positive	210.	Which one of the followin 3?	ng numbers is divisible by
	(a) zero in the unit's plac	e		(<i>a</i>) 4006020	(<i>b</i>) 2345678
	(b) 6 in the unit's place			(c) 2876423	(<i>d</i>) 9566003
	(c) either 0 or 6 in the ur	nit's place	211.	A number is divisible by 1	1 if the difference between
	(d) None of these	-		the sums of the digits	in odd and even places
200.	If m and n are positive i	integers, then the digit in		respectively is	
	the unit's place of $5^n + 6^n$			(a) a multiple of 3	
	(<i>a</i>) 1	(<i>b</i>) 5		(b) a multiple of 5	
	(c) 6	(d) n + m		(c) zero or a multiple of	7
201.	The number formed from	n the last two digits (ones		(<i>d</i>) zero or a multiple of	11
	and tens) of the express	ion $2^{12n} - 6^{4n}$, where <i>n</i> is	212.	Which one of the following	ng numbers is divisible by
	any positive integer is	(S.S.C., 2005)		11?	-
	(<i>a</i>) 10	(<i>b</i>) 00		(<i>a</i>) 4823718	(<i>b</i>) 4832718
	(c) 30	(<i>d</i>) 02		(c) 8423718	(<i>d</i>) 8432718
202.		ecimal representation of	213.	Which one of the followin 15?	ng numbers is divisible by
	$\left(\frac{1}{5}\right)^{2000}$ is	(Hotel Management, 2009)		(<i>a</i>) 17325	(<i>b</i>) 23755
				(c) 29515	(<i>d</i>) 30560
	(<i>a</i>) 2	(<i>b</i>) 4	214.	7386038 is divisible by	
	(c) 5	(<i>d</i>) 6		(<i>a</i>) 3	(<i>b</i>) 4
203.	Let <i>x</i> be the product of t			(c) 9	(<i>d</i>) 11
	3,659,893,456,789,325,678		215.	Consider the following s	tatements:
	The number of digits in :			The numbers 24984, 2678	4 and 28584 are
	(a) 32	(b) 34		(1) divisible by 3	(2) divisible by 4
	(c) 35	(<i>d</i>) 36		(3) divisible by 9	-
204.		ligits have for its middle		Which of these are correct	ct?
	•	er two digits. Then it is a		(a) 1 and 2	(<i>b</i>) 2 and 3
	multiple of (<i>a</i>) 10	(C.P.F., 2008) (<i>b</i>) 11		(c) 1 and 3	(<i>d</i>) 1, 2 and 3
	(<i>a</i>) 10 (<i>c</i>) 18	(d) 50	216.	Which of the following n	umbers is a multiple of 8?
205		iven to <i>n</i> so that the number		(a) 923872	(<i>b</i>) 923972
205.	6135n2 becomes divisible l			(c) 923862	(<i>d</i>) 923962
	(<i>a</i>) 1	(b) 2	217.	If 78*3945 is divisible by	11, where * is a digit, then
	(<i>a</i>) 1 (<i>c</i>) 3	(b) = 2 (d) 4		* is equal to	Ũ
206	Find the multiple of 11 in			(<i>a</i>) 0	(<i>b</i>) 1
200.	This die manple of IT h	(R.R.B., 2006)		(c) 3	(<i>d</i>) 5
	(<i>a</i>) 112144	(b) 447355	218.	0	ivisible by 5, which of the
	(c) 869756	(<i>d</i>) 978626		following is not necessar	-
207.	111,111,111,111 is divisibl			(a) $m + n$ is divisible by	
	(<i>a</i>) 3 and 37 only	5		(b) $m - n$ is divisible by $\frac{1}{2}$	
	(<i>b</i>) 3, 11 and 37 only			(c) $m^2 - n^2$ is divisible by	25
	(c) 3, 11, 37 and 111 only			(d) None of these	
	(<i>d</i>) 3, 11, 37, 111 and 100		219.	0	16 if and only if its last <i>X</i>
	, <i>2</i> , <i>11</i> , <i>2</i> , <i>1</i>	-		digits are divisible by 16.	The value of <i>X</i> would be
			I		

	(<i>a</i>) 3	(b) 4	231.		of the number 653 <i>xy</i> such
	(c) 5	(<i>d</i>) 6			ible by 80, then $x + y$ is
220.	Which of the following r	numbers is divisible by 3,		equal to	(b) 4
	7, 9 and 11?			(a) 3	(b) 4
	(<i>a</i>) 639	(b) 2079	222	(c) 5 The six disit number 54	(d) 6 PP74 is a multiple of 22
	(c) 3791	(<i>d</i>) 37911	232.	The six-digit number 5A for non-zoro digits A and	<i>B</i> . Which of the following
221.	A number 476**0 is divis	5			of $A + B$? (A.A.O. Exam, 2010)
	ē	hundred's and ten's place		(<i>a</i>) 8	(b) 9 (A.A.O. Exam, 2010)
	respectively are			(<i>a</i>) 8 (<i>c</i>) 10	(b) = (b)
	(<i>a</i>) 7, 4	(<i>b</i>) 5, 3	222	Which of the following n	
	(<i>c</i>) 5, 2	(d) None of these	233.	(<i>a</i>) 114345	(<i>b</i>) 913464
222.	How many of the follow:	ing numbers are divisible		(<i>c</i>) 135792	(d) 3572404
	by 3 but not by 9?		22/	The digits indicated by *	
		86, 5340, 6336, 7347, 8115,	201.	number is divisible by 99	
	9276			(<i>a</i>) 1, 9	(b) 3, 7
	(<i>a</i>) 5	(<i>b</i>) 6		(c) 4, 6	(d) 5, 5
	(c) 7	(<i>d</i>) None of these	235.	If 37X3 is a four-digit na	
223.		divisible by both 3 and 5,			as X must have the value
		n the unit's place and the		(<i>a</i>) 0	(<i>b</i>) 3
	thousandth's place respec	5		(c) 5	(<i>d</i>) 9
	(<i>a</i>) 0, 6	(b) 5, 1	236.	If the seven-digit number	
22.1	(c) 5, 4	(d) None of these		225, then the values of p	
224.	6897 is divisible by			(<i>a</i>) 0 and 0	(b) 9 and 0
	(a) 11 only	(b) 19 only		(c) 0 and 5	(<i>d</i>) 9 and 5
	(c) both 11 and 19	(<i>d</i>) neither 11 nor 19	237.	If a number 774958A96B i	is divisible by 8 and 9, the
225.	Which of the following nu	umbers is exactly divisible		respective values of A an	
	by 24?	(1) (2010		(<i>a</i>) 5 and 8	(<i>b</i>) 7 and 8
	(<i>a</i>) 35718	(b) 63810		(c) 8 and 0	(d) None of these
	(<i>c</i>) 537804	(<i>d</i>) 3125736	238.	How many of the follow	ing numbers are divisible
226.	The number 31131131131			by 132?	
	(<i>a</i>) neither divisible by 3	5		264, 396, 462, 792, 968, 21	78, 5184, 6336
	(b) divisible by 11 but no			(<i>a</i>) 4	(<i>b</i>) 5
	(c) divisible by 3 but not	-		(<i>c</i>) 6	(<i>d</i>) 7
227	(<i>d</i>) divisible by both 3 an		239.	If x and y are positive in	
227.	325325 is a six-digit num	-		1	which of the following is
	(a) 7 only (c) 12 and (c) 12	(b) 11 only		also a multiple of 11?	
	(c) 13 only	(<i>d</i>) all 7, 11 and 13		(a) $5x - 3y$	(b) $9x + 4y$
228.	If the seven-figure number	er 30X0103 is a multiple of		(c) 4x + 6y	(d) $x + y + 6$
	13, then X is (x) 1		240.	<u> </u>	per then by which largest
	(a) 1	(b) 6		number $(n^3 - n)$ is always	
220	(c) 7	(d) 8		(a) 3	(b) 6
229.	If a number is divisible b	by both 11 and 13, then it		(c) 12	(<i>d</i>) 18
	must be necessarily	(h) divisible by (11×12)	241.	If <i>a</i> and <i>b</i> are two odd pos	
	(a) 429 (a) divisible by $(11 + 12)$	(b) divisible by (11×13)		the following integers is	$(a^4 - b^4)$ always divisible?
220	-	(<i>d</i>) divisible by $(13 - 11)$		(<i>a</i>) 3	(S.S.C., 2010) (<i>b</i>) 6
230.	Which of the following divisible by 7?	numbers are completely		(<i>a</i>) 5 (<i>c</i>) 8	(d) 12
	I. 195195	II. 181181	2/12	The difference between	
	III. 120120	IV. 891891	272.	consecutive integers is eq	
				(<i>a</i>) an even number	[
	(a) Only I and II	(b) Only II and III (d) Only II and IV		(b) difference of given nu	Imbers
	(c) Only I and IV	(d) Only II and IV		(c) sum of given numbers	
	(e) All are divisible			(d) product of given num	
				, product of given num	

243.		atural number <i>n</i> is always	255.	The difference betwee		
	divisible by	(M.A.T., 2007)		consecutive odd integers		
	(a) 6 only	(<i>b</i>) 6 and 12		(<i>a</i>) 3	(<i>b</i>) 6	
	(c) 12 only	(<i>d</i>) 18 only		(c) 7	(<i>d</i>) 8	
244.	The difference of a numb	0 0	256.	A 4-digit number is form	, <u>,</u> , , , , , , , , , , , , , , , , ,	
		y interchanging the digits		number such as 2525, 3232 etc. Any number of this		
	is always divisible by	(h) 7		form is exactly divisible l	-	
	(a) 5	(b) 7 (d) 11		(a) 7	(<i>b</i>) 11	
04E	(c) 9 The sum of a number co	(d) 11		(c) 13		
243.		nsisting of two digits and		(d) Smallest 3–digit prime number		
	always divisible by	the number formed by interchanging the digits is			A 6-digit number is formed by repeating a 3-digit number; for example, 256256 or 678678 etc. Any	
	(<i>a</i>) 7	(<i>b</i>) 9				
	(<i>a</i>) <i>1</i> (<i>c</i>) 10	(<i>d</i>) 11		number of this form is al		
246.				(a) 7 only (c) 12 only	(b) 11 only (d) 1001	
	The largest natural number, which exactly divides the product of any four consecutive natural numbers,		359	(c) 13 only The sum of the digits of s		
	is	(S.S.C., 2007)	230.	The sum of the digits of a is 4707 where <i>n</i> is a path	ral number. The value of	
	(<i>a</i>) 6	(<i>b</i>) 12		<i>n</i> is	(Hotel Management, 2010)	
	(c) 24	(<i>d</i>) 120		(<i>a</i>) 477	(b) 523	
247.	If n is a whole number	er greater than 1, then		(<i>c</i>) 532	(<i>d</i>) 704	
	n^2 (n^2 – 1) is always divis	sible by	259.	$(x^n - a^n)$ is divisible by $(x^n - a^n)$		
	(<i>a</i>) 8	(<i>b</i>) 10		(a) for all values of n	,	
	(c) 12	(<i>d</i>) 16		(b) only for even values of	of n	
248.		er greater than 1, then		(c) only for odd values of n		
	$n(n^2 - 1)$ is			(d) only for prime values of n		
		(<i>b</i>) divisible by 48 always	260.	Which one of the following is the number by which		
• 10	(<i>c</i>) divisible by 96 always			the product of 8 consecutive integers is divisible?		
249.		-digit number is subtracted		(a) 4 !	(<i>b</i>) 6 !	
	from the number. The res	· ·		(c) 7 !	(<i>d</i>) 8 !	
	(<i>a</i>) not divisible by 9	(b) divisible by 9 (d) divisible by 6		(e) All of these		
250	(c) not divisible by 6(d) divisible by 6A number is multiplied by 11 and 11 is added to		261.	Consider the following statements: For any positive integer n , the number $10^n - 1$ is		
200.	the product. If the resulting number is divisible by			divisible by	<i>n</i> , the number $10^n - 1$ is	
	13, the smallest original 1			(1) 9 for $n = \text{odd only}$	(2) 9 for $n = over only$	
	(<i>a</i>) 12	(<i>b</i>) 22			(4) 11 for $n =$ even only	
	(c) 26	(<i>d</i>) 53		Which of the above state:		
251.	The product of any three consecutive natural			(<i>a</i>) 1 and 3	(<i>b</i>) 2 and 3	
	numbers is always divisi			(c) 1 and 4	(d) 2 and 4	
	(<i>a</i>) 3	(<i>b</i>) 6	262.	If <i>n</i> is any positive integer,		
	(c) 9	(<i>d</i>) 15		by	5	
252.	The sum of three consecut	ive odd numbers is always		(<i>a</i>) 7	(<i>b</i>) 12	
	divisible by			(c) 17	(<i>d</i>) 145	
	I. 2	II. 3	263.	If the square of an odd r	atural number is divided	
	III. 5	IV. 6		by 8, then the remainder	will be	
	(a) Only I	(b) Only II		(<i>a</i>) 1	(<i>b</i>) 2	
	(c) Only I and II	(d) Only I and III		(c) 3	(<i>d</i>) 4	
253.	0	which the product of three	264.	The largest number that exactly divides each number		
	consecutive multiples of	-		—	$-2, 3^5 - 3,, n^5 - n,$ is	
	(<i>a</i>) 54	(<i>b</i>) 81		(a) 1	(b) 15 (b) 100	
	(c) 162	(<i>d</i>) 243		$\begin{array}{c} (c) \ 30 \\ The effective constraints of the $	(<i>d</i>) 120	
254.	54. If <i>p</i> is a prime number greater than 3, then $(p^2 - 1)$		265.	The difference of the sq		
	is always divisible by			even integers is divisible	-	
	(<i>a</i>) 6 but not 12	(b) 12 but not 24		(<i>a</i>) 3 (<i>c</i>) 6	(b) 4 (d) 7	
	(c) 24	(d) None of these			(1) /	

266.		uares of two consecutive		(<i>a</i>) 3	(<i>b</i>) 6	
	odd integers is divisible	5		(c) 9	(<i>d</i>) 18	
		(a) 3 (b) 6		The smallest 6-digit number exactly divisible by 1		
067	(c) 7 The smallest 4 disit num	(d) 8		is		
207.	is	ber exactly divisible by 7 (P.C.S., 2009)		(<i>a</i>) 111111	(<i>b</i>) 110011	
	(<i>a</i>) 1001	(b) 1007		(c) 100011	(<i>d</i>) 110101	
	(<i>c</i>) 1101	(<i>d</i>) 1108		(e) None of these		
268.		be added to 1056 to get a	280.	The sum of all 2-digit nu	5	
2001	number exactly divisible			(<i>a</i>) 945	(<i>b</i>) 1035	
	(a) 2	<i>(b)</i> 3		(c) 1230	(<i>d</i>) 1245	
	(c) 21	(<i>d</i>) 25		(e) None of these		
269.	Which of the following numbers should be added to 8567 to make it exactly divisible by 4?		281.	How many 3-digit numbers are completely divis by 6?		
	to 0507 to make it exacti	(Bank Recruitment, 2008)		(<i>a</i>) 149	(<i>b</i>) 150	
	(<i>a</i>) 3	(b) 4		(c) 151	(<i>d</i>) 166	
	(<i>c</i>) 5	(d) 6	282.	The number of terms betw		
	(e) None of these	(1) 0		divisible by 7 but not by		
270		number which is exactly		(<i>a</i>) 18	(<i>b</i>) 19	
2701	divisible by 349.	(R.R.B., 2006)		(c) 27	(<i>d</i>) 28	
	(<i>a</i>) 100163	(<i>b</i>) 101063	283.	Out of the numbers divis	sible by 3 between 14 and	
	(c) 160063	(<i>d</i>) None of these		95 if the numbers with 3 a	t unit's place are removed,	
271.		git number exactly divisible		then how many numbers	will remain? (R.R.B., 2006)	
	by 279?	(R.R.B., 2006)		(<i>a</i>) 22	(<i>b</i>) 23	
	(<i>a</i>) 99603	(<i>b</i>) 99550		(c) 24	(<i>d</i>) 25	
	(c) 99882	(d) None of these	284.	5	than 1000 are multiples of	
272.	The least number, which	h must be added to the		both 10 and 13?		
	greatest 6-digit number	so that the sum may be		<i>(a)</i> 6	(<i>b</i>) 7	
	exactly divisible by 327 i	S		(c) 8	(<i>d</i>) 9	
	(a) 194	<i>(b)</i> 264	285.	How many integers bet		
	(c) 292	(<i>d</i>) 294		-	ivided by neither 3 nor 5?	
273.		nan 5000 which is divisible		(a) 26	(b) 27	
	by 73 is		000	(<i>c</i>) 28	(<i>d</i>) 33	
	(<i>a</i>) 5009	(<i>b</i>) 5037	286.)1 to 700 are written, what	
		(c) 5073 (d) 5099		is the total number of tin	(Civil Services, 2007)	
274.	ē)1 which is exactly divisible		(<i>a</i>) 138	(b) 139	
	by 567 is	(1) 500(0		(<i>c</i>) 140	(d) 141	
	(<i>a</i>) 55968	(<i>b</i>) 58068	287		bers are there in between	
075	(<i>c</i>) 58968 (<i>d</i>) None of these		20/1	100 and 300, having first		
275.		ch must be subtracted from		(<i>a</i>) 9	(b) 10	
	8112 to make it exactly c (<i>a</i>) 91	(b) 92		(c) 11	(<i>d</i>) 12	
	(<i>a</i>) 91 (<i>c</i>) 93	(<i>d</i>) 92 (<i>d</i>) 95	288.	The total number of integ		
276		t must be added to 803642			ins with 3 or ends with 3	
270.	in order to obtain a mult			or both is	(S.S.C., 2007)	
	(<i>a</i>) 1	(b) 4		(<i>a</i>) 10	(<i>b</i>) 100	
	(<i>a</i>) 1 (<i>c</i>) 7	(d) 9		(c) 110	(<i>d</i>) 120	
277.	()		289.	While writing all the nu	imbers from 700 to 1000,	
_//•	The number of times 99 is subtracted from 1111 so that the remainder is less than 99 is			how many numbers occur in which the first digit is		
	(<i>a</i>) 10	(b) 11			ligit, and the second digit	
	(c) 12	(d) 13		is greater than the third	-	
278.		which 66 must be multiplied		(<i>a</i>) 61	(b) 64	
	to make the result divisi			(c) 78	(<i>d</i>) 85	
		~				

290.	• A 9-digit number in which zero does not appear and no digits are repeated has the following properties: The number comprising the left most two digits is divisible by 2, that comprising the left most three			A number when divided by the sum of 555 and 445 gives two times their difference as quotient and 30 as the remainder. The number is (a) 1220 (b) 1250		
	digits is divisible by 3, ar			(<i>a</i>) 1220 (<i>c</i>) 22030	(<i>d</i>) 220030	
	The number is	la so on.	200	In doing a question of divi		
	(<i>a</i>) 183654729	(<i>b</i>) 381654729	500.	a candidate took 12 as d		
				quotient obtained by h		
001	(<i>c</i>) 983654721	(<i>d</i>) 981654723		quotient is	in was 55. The correct	
291.	If 11,109,999 is divided b	5		(<i>a</i>) 0	(<i>b</i>) 12	
	remainder?	(M.A.T., 2007)		(<i>c</i>) 13	(d) 20	
	(a) 1098	(b) 1010	301.	In a division problem, the d		
202	(c) 1110 (d) 1188			and 5 times of remainder. If the dividend is 6 times		
292.	A number divided by 68 gives the quotient 260 and remainder zero. If the same number is divided by			of remainder, then the quotient is equal to		
	65, the remainder is	the number is divided by		(<i>a</i>) 0	(b) 1	
	(<i>a</i>) 0	(<i>b</i>) 1		(c) 7	(<i>d</i>) None of these	
	(<i>a</i>) 0 (<i>c</i>) 2	(d) 3			(Hotel Management, 2007)	
293		g prime numbers while	302.	On dividing a number by 19, the difference between		
293.	dividing 2176 leaves 9 as			quotient and remainder is 9. The number is		
	(<i>a</i>) 17	(<i>b</i>) 29		(<i>a</i>) 352	(<i>b</i>) 361	
	(<i>c</i>) 167	(d) 197		(c) 370	(<i>d</i>) 371	
294	Match List I with List II and		303.	A number when divided b		
2,1.	List I	List II		If the same number is divided by 17, the remainder		
	(<i>a</i> , <i>b</i> as given in	(Values of q and r)		will be	(S.S.C., 2010)	
	Euclidean algorithm	(values of y and r)		(<i>a</i>) 2	(b) 3	
	a = bq + r)			(c) 7	(<i>d</i>) 9	
		1. $q = -13, r = 1$	304.	A number when divided by 195 leaves a remainder 47. If the same number is divided by 15, the		
	B. $a = 118, b = -9$	2. $q = 14, r = 3$			-	
	C. $a = -109, b = 6$	3. $q = -19, r = 5$		remainder will be	(Hotel Management, 2010)	
	D. $a = 115, b = 8$	4. $q = 16, r = 0$		(<i>a</i>) 1 (<i>c</i>) 3	(b) 2 (d) 4	
	A B C D	A B C D	205			
	(a) 3 1 4 2	(b) $3 \ 2 \ 4 \ 1$	303.	A certain number when divided by 899 gives a remainder 63. What is the remainder when the same		
	(c) $4 \ 1 \ 3 \ 2$	(d) 4 2 3 1		number is divided by 29?		
295.	The number 534677 is divi			(<i>a</i>) 5	(<i>b</i>) 25	
	of divisor and remainder			(c) 27	(d) None of these	
	(a) 577 (b) 676			A number when divided		
	(c) 687 (d) 789			3. What is the remainder when the square of the		
296.	In a division sum, the			same number is divided l	by 5?	
	remainder are 15, 940 a			(<i>a</i>) 0	(<i>b</i>) 3	
	divisor is			(c) 4	(<i>d</i>) 9	
	(<i>a</i>) 31	(<i>b</i>) 50	307.	The difference between tw		
	(c) 60	(<i>d</i>) 61		the larger number is divid	5	
297.	In a division sum, the divisor is 12 times the quotient			quotient is 6 and the remainder is 15. What is the		
	and 5 times the remainder. If the remainder is 48,			smaller number?		
	then the dividend is			(a) 240	(b) 270	
	(<i>a</i>) 2404	(<i>b</i>) 3648	200	(c) 295	(<i>d</i>) 360	
	(c) 4808	(<i>d</i>) 4848	308.	When n is divided by 4,		
	The divisor is 25 times the quotient and 5 times the			is the remainder when $2n$	-	
	remainder. If the quotient is 16, then the dividend			(a) 1	(b) 2 (d) 6	
	is	(1) 100	300	(c) 3 When a number is divide		
	(<i>a</i>) 400	(b) 480	509.	11. When the same num	-	
	(c) 6400	(<i>d</i>) 6480		remainder is 9. What is th	-	

310.	In a division sum, the re	mainder was 71. With the		(c) 4	(<i>d</i>) 5	
0100		e dividend, the remainder	319.	When the square of any		an
	is 43. Which one of the f		0100	1, is divided by 8, it alw		
	(<i>a</i>) 86	(b) 93			(I.A.M., 200	7)
	(<i>c</i>) 99	(<i>d</i>) 104		(<i>a</i>) 1	(<i>b</i>) 6	- /
311	()	integer <i>P</i> is divided by		(<i>c</i>) 8		
011.		the remainder is r_1 . When		(<i>d</i>) Cannot be determine	d	
		Q is divided by the same	220			d.
		s r_2 and when $(P + Q)$ is	320.	The numbers from 1 to 2 as follows:	29 are written side by sid	Je
		visor, the remainder is r_3 .		1234567891011121314	2820	
	Then the divisor may be					ما
	-	(b) $r_1 + r_2 + r_3$		If this number is divide	5	
	(c) $r_1 - r_2 + r_3$			remainder?	(M.A.T., 2000	6)
	(e) Cannot be determined			(a) 0	(b) 1	
312.		ided by a certain divisor		(c) 3	(d) None of these	
		75 and 2986 respectively	321.	If 17^{200} is divided by 18,		
		vo numbers is divided by		(<i>a</i>) 1	(<i>b</i>) 2	
		ainder is 2361. The divisor		(c) 16	(<i>d</i>) 17	
	in question is		322.	What is the remainder v	-	?
	(<i>a</i>) 4675	(<i>b</i>) 4900		(<i>a</i>) 1	(<i>b</i>) 2	
	(c) 5000	(d) None of these		(<i>c</i>) 3	(d) 4	
313.	A number divided by 13	leaves a remainder 1 and	323.	Consider the following s	statements:	
	if the quotient, thus obta	nined, is divided by 5, we		(1) $a^n + b^n$ is divisible by	a + b if $n = 2k + 1$, when	re
	get a remainder of 3. W	hat will be the remainder		<i>k</i> is a positive intege	r.	
	if the number is divided	-			a - b if $n = 2k$, where k	is
	(<i>a</i>) 16	(<i>b</i>) 18		a positive integer.		
	(<i>c</i>) 28	(<i>d</i>) 40		Which of the statements	given above is/are correc	ct?
314.		75 are divided by a three-		(<i>a</i>) 1 only	(<i>b</i>) 2 only	
		the same remainder. The		(c) Both 1 and 2	(d) Neither 1 nor 2	
	sum of the digits of <i>N</i> is		324.	$(7^{19} + 2)$ is divided by 6	. The remainder is	
	(<i>a</i>) 10	(<i>b</i>) 11		(<i>a</i>) 1	(<i>b</i>) 2	
	(<i>c</i>) 12	(<i>d</i>) 13		(<i>c</i>) 3	(<i>d</i>) 5	
315.		ed by three consecutive	325.	If $(10^{12} + 25)^2 - (10^{12} - 25)^2$	$(5)^2 = 10^n$, then the value	of
		the remainders 8, 9 and 8		<i>n</i> is		
	- ·	of divisors is reversed, the		(<i>a</i>) 5	(<i>b</i>) 10	
	remainders will be	(R.R.B., 2008)		(c) 14	(<i>d</i>) 20	
	(<i>a</i>) 10, 8, 9	(<i>b</i>) 10, 1, 6	326.	$(3^{25} + 3^{26} + 3^{27} + 3^{28})$ is	divisible by	
	(c) 8, 9, 8	(<i>d</i>) 9, 8, 8		(<i>a</i>) 11	(<i>b</i>) 16	
316.		number successively by 3,		(c) 25	(<i>d</i>) 30	
		obtained are 2, 1 and 4	327.	$(4^{61} + 4^{62} + 4^{63} + 4^{64})$ is	divisible by	
	the same number?	the remainder if 84 divides		(<i>a</i>) 3	(<i>b</i>) 11	
		(h) 53		(c) 13	(<i>d</i>) 17	
	(a) 41	(b) 53	328.	$(9^6 + 1)$ when divided by 8	3, would leave a remainder	of
	(c) 75	(<i>d</i>) 80		(a) 0	(b) 1	

(c) any odd integer

317. A number is successively divided by 8, 7 and 3 giving residues 3, 4 and 2 respectively and quotient 31. The number is

(<i>a</i>) 3555	(b) 5355
(c) 5535	(<i>d</i>) 5553

318. A number when divided by 3 leaves a remainder 1. When the quotient is divided by 2, it leaves a

(a) 339

(c) 369

(e) None of these

(b) 349

(*d*) Data inadequate

remainder 1. What will be the remainder when the number is divided by 6? (*b*) 3 (*a*) 2 (*a*) 0 (b) 1 (*c*) 2 (*d*) 3 **329.** If *n* is even, $(6^n - 1)$ is divisible by (*a*) 6 (b) 30 (c) 35 (*d*) 37 **330.** If $(12^n + 1)$ is divisible by 13, then *n* is (*a*) 1 only (b) 12 only

(*d*) any even integer

331.	25^{25} is divided by 26, the	remainder is	344.	Find the last two digits of	of N.
	(<i>a</i>) 1	(<i>b</i>) 2		(<i>a</i>) 00	(<i>b</i>) 13
	(c) 24	(<i>d</i>) 25		(c) 19	(<i>d</i>) 23
332.	If $(67^{67} + 67)$ is divided b	y 68, the remainder is	345.	Find the remainder when	N is divided by 168.
	(<i>a</i>) 1	(<i>b</i>) 63		(<i>a</i>) 33	(<i>b</i>) 67
	(<i>c</i>) 66	(<i>d</i>) 67		(c) 129	(<i>d</i>) 153
333.	One less than $(49)^{15}$ is exactly be a set of the s	actly divisible by	346.	What is the remainder w	hen 4^{61} is divided by 51?
	(<i>a</i>) 8	(b) 14		(<i>a</i>) 20	(b) 41
	(c) 50	(<i>d</i>) 51		(c) 50	(d) None of these
334.	The remainder when 7 ⁸⁴	is divided by 342 is	347.	What is the remainder w	hen 17 ³⁶ is divided by 36?
	(<i>a</i>) 0	(b) 1		(<i>a</i>) 1	(<i>b</i>) 7
	(c) 49	(<i>d</i>) 341		(c) 19	(<i>d</i>) 29
335.	The remainder when 2 ⁶⁰	is divided by 5 equals	348.	Which one of the follow:	ing is the common factor
	(<i>a</i>) 0	(b) 1		of $(47^{43} + 43^{43})$ and (47^{47})	$+ 43^{47})?$
	(c) 2	(<i>d</i>) 3		(a) $(47 - 43)$	(b) (47 + 43)
336.	By how many of the foll	owing numbers is $2^{12} - 1$		(c) $(47^{43} + 43^{43})$	(d) None of these
	divisible?	<u> </u>	349.	Find the product of all of	odd natural numbers less
	2, 3, 5, 7, 10, 11, 13, 14			than 5000.	
	(<i>a</i>) 4	(<i>b</i>) 5		5000 !	(b) 5000 !
	(<i>c</i>) 6	(<i>d</i>) 7		(a) $\frac{30001}{2500 \times 2501}$	(b) $\frac{5000!}{2^{2500} \times 2500!}$
337.	The remainder when (15 ²	$^{3} + 23^{23}$) is divided by 19,		5000 !	
	is			(c) $\frac{5000}{2^{5000}}$	(d) None of these
	(<i>a</i>) 0	(<i>b</i>) 4			
	(c) 15	(<i>d</i>) 18	350.	How many zeros will be	
338.	When 2 ²⁵⁶ is divided by	17, the remainder would		pages of a book containing	
	be			(<i>a</i>) 168	(<i>b</i>) 184
	(<i>a</i>) 1	(<i>b</i>) 14		(c) 192	(<i>d</i>) 216
	(c) 16	(d) None of these	351.	If $a^2 + b^2 + c^2 = 1$, what	is the maximum value of
339.	$7^{6n} - 6^{6n}$, where <i>n</i> is an in	nteger > 0 , is divisible by		abc?	
	(<i>a</i>) 13	(<i>b</i>) 127		(a) $\frac{1}{-}$	(b) $\frac{1}{3\sqrt{3}}$
	(c) 559	(<i>d</i>) All of these		3	3√3
340.	It is given that $(2^{32} + 1)$			(a) $\frac{1}{3}$ (c) $\frac{2}{\sqrt{3}}$	(<i>d</i>) 1
		of the following is also		$\sqrt{3}$	
	definitely divisible by the		352.	Find the unit's digit in th	e sum of the fifth powers
	$()$ 2^{16} 4	(S.S.C., 2007)		of the first 100 natural nu	umbers.
	(a) $2^{16} + 1$	(b) $2^{16} - 1$		(<i>a</i>) 0	(<i>b</i>) 2
	(c) 7×2^{33}	(d) $2^{96} + 1$		(c) 5	(<i>d</i>) 8
341.	The number $(2^{48} - 1)$ is	5	353.	If the symbol [x] denotes	
	numbers between 60 and			than or equal to <i>x</i> , then t	he value of
	(a) 62 and 65	(A.A.O. Exam, 2010)		$\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{50}\right] + \left[\frac{1}{4} + \frac{2}{50}\right]$	+ + $\left[\frac{1}{49}\right]_{is}$
	(<i>a</i>) 63 and 65 (<i>c</i>) 61 and 65	(<i>b</i>) 63 and 67 (<i>d</i>) 65 and 67		$\lfloor 4 \rfloor \lfloor 4 \rfloor 50 \rfloor \lfloor 4 \rfloor 50 \rfloor$	$\lfloor 4 \rfloor 50 \rfloor$
2/12	<i>n</i> being any odd number			(<i>a</i>) 0	(<i>b</i>) 9
342.	always divisible by	greater than $1, n = n$ is		(c) 12	(d) 49
	(<i>a</i>) 5	(<i>b</i>) 13	354.	When $100^{25} - 25$ is writte	
	(<i>a</i>) 5 (<i>c</i>) 24	(d) None of these		sum of its digits is	
343	Let $N = 55^3 + 17^3 - 72^3$.			(<i>a</i>) 444	(<i>b</i>) 445
545.	(a) both 7 and 13	(<i>b</i>) both 3 and 13		(<i>c</i>) 446	(d) 448
	(<i>c</i>) both 17 and 7	(<i>d</i>) both 3 and 17	355.	What is the number of di	
Diro				× $(125)^{11}$?	0
	ctions (Questions 344–345 ne following information:	9. These questions are based		(<i>a</i>) 35	(<i>b</i>) 36
	m N = [1 + [2 + [3 + + [9 +]])	99 + 100		(<i>c</i>) 37	(<i>d</i>) 38
Jive	······································				× /

30			
356.	How many numbers will 500, where 4 comes only		362.
	(<i>a</i>) 89	(b) 99	
	(c) 110	(<i>d</i>) 120	
		Subordinate (Pre.) Exam, 2016]	
357.	Which is not a prime nur		262
	[India	n Railways Gr. 'D' Exam, 2014]	363.
	(<i>a</i>) 13	(b) 19	
	(c) 21	(<i>d</i>) 17	
358.	If $x = a (b - c), y = b (c - c)$	a), $z = c (a - b)$, then the	
	value of $\left(\frac{x}{a}\right)^3 + \left(\frac{y}{b}\right)^3 + \left(\frac{z}{c}\right)^3$	$\Big)^3$ is	
	[55	C—CHSL (10 + 2) Exam, 2015]	
	(a) $\frac{2xyz}{abc}$	(b) $\frac{xyz}{abc}$	364.
	(c) 0	(d) $\frac{3xyz}{abc}$	
359.	Among the following states is not correct is: [55 (<i>a</i>) Every natural number	6C—CHSL (10 + 2) Exam, 2015]	365.
		Ũ	
	(<i>b</i>) Every natural number		
	(c) Every real number is		
	(<i>d</i>) Every integer is a ratio		366.
360.	If $a + b + c = 6$ and $ab + b$ of $a^3 + b^3 + c^3 - 3abc$ is	c + ca = 10 then the value	
		C—CHSL (10 + 2) Exam, 2015]	
	(<i>a</i>) 36	(<i>b</i>) 48	
	(c) 42	(<i>d</i>) 40	367.
361.	If $(1001 \times 111) = 110000 + (1000)$	$11 \times$), then the number	
	in the blank space is		
	(<i>a</i>) 121	(<i>b</i>) 211	
	(c) 101	(<i>d</i>) 1111	
р.		[CTET, 2016]	368.
	ction (Question 362): The f	Ű,	
	question and two stateme		
	ou have to decide whether ment(s) is/are sufficient		
	n answer	to answer the question.	
	The data in statement I alo	one is sufficient to answer	369.
(A)	the question while II alone the questions.		
(B)	Data in statement II alor	e is sufficient to answer	
. /	the question while data in sufficient to answer the q	n statement I alone is not	370.
(C)	The data in statement I al		

- (C) The data in statement I alone or statement II alone is sufficient to answer the question.
- (D) The data in both Statement I and II is insufficient to answer the question.
- (E) The data in both Statement I and II is sufficient to answer the question.

362. If (the place value	of 5 in 15201) + (the place valu	e
of 6 in 2659) = 7	×, then the number of th	e
blank space is:		
(<i>a</i>) 800	<i>(b)</i> 80	
(c) 90	(<i>d</i>) 900	
	[CTET, 2010	6]

363. The sum of digits of a two – digit number is 12 and the difference between the two – digits of the two – digit number is 6. What is the two – digit number?

```
[IBPS—RRB Office Assistant (Online) Exam, 2015]
```

- (a) 39 (b) 84
- (c) 93
- (*d*) Other than the given options
- (e) 75

364. The difference between the greatest and the least four digit numbers that beings with 3 and ends with 5 is [SSC—CHSL (10 + 2) Exam, 2015]

(a) 900	(<i>b</i>) 909
() 000	(1) 000

- (c) 999 (d) 990The sum of the perfect squares between 120 and 300 is
 - [SSC—CHSL (10 + 2) Exam, 2015]

(<i>a</i>) 1204	<i>(b)</i> 1024
(c) 1296	(<i>d</i>) 1400

366. If $p^3 - q^3 = (p - q) (p - q)^2 - xpq$, then find the value of x [SSC—CHSL (10 + 2) Exam, 2015]

367. What minimum value should be assigned to *, so that 2361*48 is exactly divisible by 9?

[ESIC—UDC Exam, 2016]

(<i>a</i>) 2	(<i>b</i>) 3
(c) 9	(<i>d</i>) 4

368. If *p*, *q*, *r* are all real numbers then $(p-q)^3 + (q-r)^3 + (r-p)^3$

is equal to	[SSC—CAPF/CPOExam, 2016]
(a) (p-q)(q-r)(r-p)	(b) $3(p-q)(q-r)(r-p)$
(c) 1	(<i>d</i>) 0

369. If $(a^2 - b^2) \div (a + b) = 25$, then (a + b) = ?

(<i>a</i>) 30	<i>(b)</i> 25
(c) 125	(<i>d</i>) 150

[RRB—NTPC Exam, 2016]

370. How many prime numbers are there between 100 to 200? [CMAT, 2017] (*a*) 21 (*b*) 20 (*c*) 16 (*d*) 11

371. The least number of five digit is exactly divisible by 88 is

(<i>a</i>) 10032	<i>(b)</i> 10132
(c) 10088	(<i>d</i>) 10023
	[SSC Multi-Tasking Staff Exam -2017]

372. The number of three digit numbers which are multiples of 9 are

[CLAT, 2016]

(<i>a</i>)	100	(b) 99
(C)	98	(<i>d</i>) 101

373. Two consecutive even positive integers, sum of the squares of which is 1060, are

[CLAT, 2016]

(a) 12 and 14	(<i>b</i>) 20 and 22
(c) 22 and 24	(<i>d</i>) 15 and 18

Directions (Question 374): The question below consists of a question and two statements numbered I and II given below it. You have to decide whether the data given in the statements are sufficient to answer the questions. Read both the statements and given answer.

- (A) If the data in statement I alone is sufficient to answer the question, while the data in statement II alone is not sufficient to answer the question.
- (B) If the data in statement II alone is sufficient to answer the question, while the data in statement I alone is not sufficient to answer the question.
- (C) If the data either in statement I alone or statement II alone is sufficient to answer the questions.
- (D) If the data given in both Statement I and II together are not sufficient to answer the question.
- (E) If the data in both Statement I and II together are necessary to answer the question.
- 374. What is the number of trees planted in the field in row and column?

[IBPS—Bank Spl. Officer (Marketing) Exam, 2016]

- I. Number of columns is more than the number of rows by 4.
- II. Number of columns is 20.

[CDS, 2016]

(a)
$$x_1 + x_2 + x_3$$
 (b) x_1, x_2, x_3

(c) $(x_1 + 1) (x_2 + 1) (x_3 + 1)$ (d) None of the above

376. Consider the following statements for the sequence of numbers given below:

- 11, 111, 1111, 11111,
- 1. Each number can be expressed in the form (4m + 3), where *m* is a natural number.

2. Some numbers are squares.

Which of the above statements is/are correct? [CDS, 2016]

- (*a*) 1 only (*b*) 2 only (*c*) Both 1 and 2
- (d) neither 1 nor 2) 377. If the sum of two numbers is 14 and their difference
- is 10. Find the product of these two numbers. [UPSSSC Lower Subordinate (Pre.) Exam. 2016]

		[01333C Lower Subordinate (11e.) Exam, 2010]
	(<i>a</i>) 24	<i>(b)</i> 22
	(c) 20	(<i>d</i>) 18
8.	If $m = -4$,	n = -2, then the value of
	$m^3 - 3m^2 + 3m^2$	$3m + 3n + 3n^2 + n^3$ is

37

(<i>a</i>) -120	(b) -124
-------------------	----------

(c) -126 (d) -128

[SSC-CGL (Tier-I) Exam, 2015]

- **379.** If the sum of two numbers is 14 and their difference is 10, find the product of these two numbers. [UPSSSC—Lower Subordinate (Pre.) Exam 2016]
 - (a) 18 (b) 20
 - (*d*) 22 (c) 24
- **380.** What is the sum of all natural numbers from 1 to 100? [CLAT-2016] (a) 5050 (b) 6000
 - (c) 5000 (*d*) 5052

ANSWERS

1. (c)	2. (<i>a</i>)	3. (<i>c</i>)	4. (<i>d</i>)	5. (<i>c</i>)	6. (<i>c</i>)	7. (<i>c</i>)	8. (C)	9. (<i>a</i>)	10. (c)
11. (<i>b</i>)	12. (<i>b</i>)	13. (<i>d</i>)	14. (<i>c</i>)	15. (<i>d</i>)	16. (<i>b</i>)	17. (<i>c</i>)	18. (<i>b</i>)	19. (<i>c</i>)	20. (<i>d</i>)
21. (<i>c</i>)	22. (<i>c</i>)	23. (<i>c</i>)	24. (<i>b</i>)	25. (<i>d</i>)	26. (<i>d</i>)	27. (<i>a</i>)	28. (<i>c</i>)	29. (<i>c</i>)	30. (<i>c</i>)
31. (<i>b</i>)	32. (<i>b</i>)	33. (<i>d</i>)	34. (<i>a</i>)	35. (<i>c</i>)	36. (<i>d</i>)	37. (<i>b</i>)	38. (<i>c</i>)	39. (<i>a</i>)	40. (<i>d</i>)
41. (<i>a</i>)	42. (<i>d</i>)	43. (<i>d</i>)	44. (<i>d</i>)	45. (<i>d</i>)	46. (<i>d</i>)	47. (<i>d</i>)	48. (<i>c</i>)	49. (<i>a</i>)	50. (<i>b</i>)
51. (<i>b</i>)	52. (<i>b</i>)	53. (<i>c</i>)	54. (<i>d</i>)	55. (<i>b</i>)	56. (<i>d</i>)	57. (<i>b</i>)	58. (<i>c</i>)	59. (<i>d</i>)	60. (<i>b</i>)

QUANTITATIVE APTITUDE

61.	(<i>d</i>)	62. (<i>d</i>)	63. (<i>c</i>)	64. (<i>a</i>)	65. (<i>c</i>)	66. (<i>a</i>)	67. (<i>a</i>)	68. (<i>c</i>)	69. (<i>d</i>)	70. (<i>b</i>)
71.	(<i>a</i>)	72. (<i>b</i>)	73. (<i>c</i>)	74. (<i>d</i>)	75. (<i>c</i>)	76. (<i>b</i>)	77. (<i>c</i>)	78. (<i>b</i>)	79. (<i>d</i>)	80. (<i>d</i>)
81.	(C)	82. (<i>d</i>)	83. (<i>c</i>)	84. (<i>e</i>)	85. (<i>c</i>)	86. (<i>a</i>)	87. (<i>b</i>)	88. (<i>b</i>)	89. (<i>e</i>)	90. (<i>d</i>)
91.	(C)	92. (<i>a</i>)	93. (<i>c</i>)	94. (<i>c</i>)	95. (<i>d</i>)	96. (<i>d</i>)	97. (<i>a</i>)	98. (<i>c</i>)	99. (<i>c</i>)	100. (<i>a</i>)
101.	(<i>b</i>)	102. (<i>a</i>)	103. (<i>a</i>)	104. (<i>c</i>)	105. (<i>a</i>)	106. (<i>c</i>)	107. (<i>a</i>)	108. (<i>b</i>)	109. (<i>b</i>)	110. (<i>e</i>)
111.	(<i>a</i>)	112. (<i>a</i>)	113. (<i>b</i>)	114. (<i>a</i>)	115. (<i>b</i>)	116. (<i>c</i>)	117. (<i>a</i>)	118. (<i>c</i>)	119. (<i>b</i>)	120. (<i>a</i>)
121.	(e)	122. (<i>d</i>)	123. (<i>c</i>)	124. (<i>b</i>)	125. (<i>a</i>)	126. (<i>b</i>)	127. (<i>c</i>)	128. (<i>d</i>)	129. (<i>d</i>)	130. (<i>d</i>)
131.	(b)	132. (<i>b</i>)	133. (<i>b</i>)	134. (<i>d</i>)	135. (<i>d</i>)	136. (<i>a</i>)	137. (<i>a</i>)	138. (<i>b</i>)	139. (<i>a</i>)	140. (<i>b</i>)
141.	(a)	142. (<i>c</i>)	143. (<i>d</i>)	144. (<i>d</i>)	145. (e)	146. (<i>c</i>)	147. (<i>a</i>)	148. (<i>b</i>)	149. (<i>c</i>)	150. (<i>a</i>)
151.	(<i>e</i>)	152. (<i>c</i>)	153. (<i>c</i>)	154. (<i>c</i>)	155. (<i>b</i>)	156. (<i>a</i>)	157. (<i>a</i>)	158. (<i>d</i>)	159. (<i>b</i>)	160. (<i>c</i>)
161.	(<i>d</i>)	162. (<i>d</i>)	163. (<i>b</i>)	164. (<i>d</i>)	165. (<i>d</i>)	166. (<i>a</i>)	167. (<i>a</i>)	168. (<i>a</i>)	169. (<i>c</i>)	170. (<i>b</i>)
171.	(<i>d</i>)	172. (<i>b</i>)	173. (<i>c</i>)	174. (<i>a</i>)	175. (<i>b</i>)	176. (<i>a</i>)	177. (<i>a</i>)	178. (<i>d</i>)	179. (<i>c</i>)	180. (<i>a</i>)
181.	(<i>d</i>)	182. (<i>c</i>)	183. (<i>c</i>)	184. (<i>b</i>)	185. (<i>b</i>)	186. (<i>c</i>)	187. (<i>a</i>)	188. (<i>C</i>)	189. (<i>c</i>)	190. (<i>c</i>)
191.	(c)	192. (b)	193. (<i>a</i>)	194. (<i>a</i>)	195. (<i>b</i>)	196. (<i>a</i>)	197. (b)	198. (<i>a</i>)	199. (<i>c</i>)	200. (<i>a</i>)
201.	(b)	202. (<i>d</i>)	203. (<i>b</i>)	204. (<i>b</i>)	205. (<i>a</i>)	206. (<i>d</i>)	207. (<i>d</i>)	208. (<i>d</i>)	209. (<i>c</i>)	210. (<i>a</i>)
211.	(<i>d</i>)	212. (<i>b</i>)	213. (<i>a</i>)	214. (<i>d</i>)	215. (<i>d</i>)	216. (<i>a</i>)	217. (<i>d</i>)	218. (<i>a</i>)	219. (<i>b</i>)	220. (<i>b</i>)
221.	(c)	222. (b)	223. (<i>d</i>)	224. (<i>c</i>)	225. (<i>d</i>)	226. (<i>a</i>)	227. (<i>d</i>)	228. (<i>d</i>)	229. (b)	230. (<i>e</i>)
231.	(<i>d</i>)	232. (<i>b</i>)	233. (<i>a</i>)	234. (<i>a</i>)	235. (<i>a</i>)	236. (<i>c</i>)	237. (<i>c</i>)	238. (<i>a</i>)	239. (<i>a</i>)	240. (<i>b</i>)
241.	(C)	242. (<i>c</i>)	243. (<i>b</i>)	244. (<i>c</i>)	245. (<i>d</i>)	246. (<i>c</i>)	247. (<i>c</i>)	248. (<i>a</i>)	249. (<i>b</i>)	250. (<i>a</i>)
251.	(b)	252. (<i>b</i>)	253. (<i>c</i>)	254. (<i>c</i>)	255. (<i>d</i>)	256. (<i>d</i>)	257. (<i>d</i>)	258. (<i>b</i>)	259. (<i>a</i>)	260. (<i>e</i>)
261.	(<i>d</i>)	262. (<i>c</i>)	263. (<i>a</i>)	264. (<i>c</i>)	265. (<i>b</i>)	266. (<i>d</i>)	267. (<i>a</i>)	268. (<i>a</i>)	269. (<i>e</i>)	270. (<i>a</i>)
271.	(c)	272. (<i>d</i>)	273. (<i>b</i>)	274. (<i>c</i>)	275. (<i>c</i>)	276. (<i>c</i>)	277. (b)	278. (<i>a</i>)	279. (<i>c</i>)	280. (<i>a</i>)
281.	(b)	282. (<i>a</i>)	283. (<i>c</i>)	284. (b)	285. (<i>b</i>)	286. (<i>c</i>)	287. (b)	288. (<i>c</i>)	289. (<i>d</i>)	290. (<i>b</i>)
291.	(c)	292. (<i>a</i>)	293. (<i>d</i>)	294. (<i>c</i>)	295. (b)	296. (<i>d</i>)	297. (<i>d</i>)	298. (<i>d</i>)	299. (<i>d</i>)	300. (<i>d</i>)
301.	(b)	302. (<i>d</i>)	303. (<i>a</i>)	304. (<i>b</i>)	305. (<i>a</i>)	306. (<i>c</i>)	307. (<i>b</i>)	308. (<i>b</i>)	309. (<i>b</i>)	310. (<i>c</i>)
311.	(<i>d</i>)	312. (<i>c</i>)	313. (<i>d</i>)	314. (<i>a</i>)	315. (<i>b</i>)	316. (<i>b</i>)	317. (<i>b</i>)	318. (<i>c</i>)	319. (<i>a</i>)	320. (<i>c</i>)
321.	(a)	322. (<i>c</i>)	323. (<i>c</i>)	324. (<i>c</i>)	325. (<i>c</i>)	326. (<i>d</i>)	327. (<i>d</i>)	328. (<i>c</i>)	329. (<i>c</i>)	330. (<i>c</i>)
331.	(<i>d</i>)	332. (<i>c</i>)	333. (<i>a</i>)	334. (<i>b</i>)	335. (<i>b</i>)	336. (<i>a</i>)	337. (<i>a</i>)	338. (<i>a</i>)	339. (<i>d</i>)	340. (<i>d</i>)
341.	(<i>a</i>)	342. (<i>c</i>)	343. (<i>d</i>)	344. (<i>b</i>)	345. (<i>a</i>)	346. (<i>d</i>)	347. (<i>a</i>)	348. (<i>b</i>)	349. (<i>b</i>)	350. (<i>c</i>)
351.	(<i>b</i>)	352. (<i>a</i>)	353. (<i>c</i>)	354. (<i>a</i>)	355. (<i>b</i>)	356. (b)	357. (<i>c</i>)	358. (<i>d</i>)	359. (<i>c</i>)	360. (<i>a</i>)
361.	(c)	362. (<i>a</i>)	363. (<i>d</i>)	364. (<i>d</i>)	365. (<i>d</i>)	366. (b)	367. (b)	368. (<i>b</i>)	369. (<i>b</i>)	370. (<i>a</i>)
371.	(<i>a</i>)	372. (<i>a</i>)	373. (<i>c</i>)	374. (<i>d</i>)	375. (<i>b</i>)	376. (<i>a</i>)	377. (<i>a</i>)	378. (<i>c</i>)	379. (<i>c</i>)	380. (<i>a</i>)

SOLUTIONS

1.	TL	L	T-Th	Th	Н	Т	0
	3	2	5	4	7	1	0

Place value of $5 = (5 \times 10000) = 50000$.

- **2.** The face value of 8 in the given numeral is 8.
- **3.** Sum of the place values of 3 = (3000 + 30) = 3030.
- **4.** Difference between the place values of 7 and 3 in given numeral = (7000 30) = 6970.
- **5.** Difference between the local value and the face value of 7 in the given numeral = (70000 7) = 69993.
- 6. Required sum = (99999 + 10000) = 1099999.
- **7.** Required difference = (10000 999) = 9001.
- 8. Required number = 30005.
- **9.** Required number = 2047.
- **10.** All natural numbers and 0 are called the whole numbers.
- Clearly, there exists a smallest natural number, namely 1. So statement (1) is true. Natural numbers are counting numbers and the counting

process never ends. So, the largest nature number is not known. Thus, statement (2) is false.

Thre is no natural number between two consecutive natural numbers. So, statement (3) is false.

- **12.** Clearly, every rational number is also a real number.
- **13.** Clearly, π is an irrational number.
- **14.** Since $\sqrt{2}$ is a non-terminating and non-repeating decimal, so it is an irrational number.
- **15.** $\sqrt{3}$ is an infinite non-recurring decimal.
- 16. We can write 9 = (1 + 8) ; 9 = (2 + 7) ;
 9 = (3 + 6), 9 = (4 + 5).
 Thus, it can be done in 4 ways.
- 17. We may have (64 and 1), (32 and 2), (16 and 4) and (8 and 8).

In any case, the sum is not 35.

- **18.** We may take the least values of y and z as y = 1 and z = 1.
 - So, the maximum value of x is 7.

19. We know that:
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6} n (n + 1) (2n + 1).$$

:
$$(1^2 + 2^2 + 3^2 + \dots + 9^2) = \left(\frac{1}{6} \times 9 \times 10 \times 19\right) = 285.$$

20. $(n + 7) = 88 \Rightarrow n = (88 - 7) = 81$, which is false as 20 < n < 80.

So, the required number is 88.

- **21.** We have, M = 1000; D = 500; C = 100 and L = 50. $\therefore M > D > C > L$ is the correct sequence.
- **22.** These numbers are 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2. 8th number from the bottom is 16.
- **23.** The given series is such that the sum of first hundred terms is zero, and 101st term is 2. So, the sum of 101 terms is 2.
- 24. Given series is 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4,
 ∴ 96th term is 4. So, T₉₇ = 1 and T₉₈ = 2. Hence, the 98th term is 2.
- **25.** Let the hundred's, ten's and one's digits be *x*, *y* and *z* respectively.

Then, the given number is 100 x + 10 y + z.

26. Let the thousand's, hundred's, ten's and one's digits be *x*, *y*, *z*, *w* respectively.

Then, the number is 1000 x + 100 y + 10 z + w = 10³ x + 10² y + 10 z + w.

- **27.** We know that the sum of two odd numbers is even. \therefore (*n* is odd, *p* is odd) \Rightarrow (*n* + *p*) is even.
- **28.** n^3 is odd \Rightarrow *n* is odd and n^2 is odd. \therefore I and II are true.
- **29.** (n 1) is odd \Rightarrow (n 1) 2 and (n 1) + 2 are odd \Rightarrow (n 3) and (n + 1) are odd.
- **30.** The product of two odd numbers is always odd.
- **31.** x is odd \Rightarrow x² is odd \Rightarrow 5x² is odd \Rightarrow (5x² + 2) is odd.
- **32.** $ab = 0 \Rightarrow a = 0$ or b = 0 or both are zero.
- **33.** $A < B < C < D \Rightarrow D > B > A$ Also, A < B < C < D and $D > B > E \Rightarrow E < B < C < D$ $\Rightarrow E < C < D$ and E < B < C. Clearly, we cannot arrange *A*, *E*, *C* is an increasing or decreasing order.
- **34.** When *m* is even, then m(n + o')(p q) is even.
- **35.** $n < 0 \Rightarrow 2n < 0, -n > 0$ and $n^2 = (-n)^2 > 0$.
- Thus, out of the numbers 0, -n, 2n and n^2 we find that 2n is the least.
- 36. It is given that x y = 8.
 I. We may have x = 5 and y = -3.
 So, it is not necessary that both x and y are positive.
 II. If x is positive, then it is not necessary that y is positive, as
 - $x = 5 \Rightarrow y = -3.$ III. If x < 0, then y = x - 8 which is clearly less than 0.
- So, if *x* is negative, then *y* must be negative. **37.** If x < 0 and y < 0, then clearly xy > 0. So, whenever *x* and *y* are negative, then *xy* is positive. Note that (x < 0, y < 0) does not imply that (x + y) is positive. e.g. If x = -2 and y = -3, then (x + y) = -5 < 0.

Note that (x < 0, y < 0) does not imply that (x - y) > 0. e.g. If x = -5 and y = -2, then x - y = -5 - (-2)= -5 + 2 = -3 < 0.

38. Let n = 1 + x = 1 + m (m + 1) (m + 2) (m + 3), where *m* is a positive integer. Then, clearly two of *m*, (m + 1), (m + 2), (m + 3) are even and so their product is even. Thus, *x* is even and hence

n = 1 + x is odd. Also, $n = 1 + m (m + 3) (m + 1) (m + 2) = 1 + (m^2 + 3m)$

$$(m^2 + 3m + 2)$$

 $\Rightarrow n = 1 + y (y + 2)$, where $m^2 + 3m = y$

 \Rightarrow *n* = 1 + *y*² + 2*y* = (1 + *y*)², which is a perfect square. Hence, I and III are true.

39.
$$1 \le x \le 2 \Rightarrow 1 \le \frac{2}{5}y + 3 \le 2$$

 $\Rightarrow (1-3) \le \frac{2}{5}y \le (2-3) \Rightarrow \frac{5}{2}(1-3) \le y \le \frac{5}{2}(2-3)$
 $\Rightarrow -5 \le y \le \frac{-5}{2}$.

Hence, y increases from -5 to $\frac{-5}{2}$.

- **40.** (a) Let x = 0 and $y = \sqrt{2}$. Then, x is rational and y is irrational.
 - \therefore $x + y = 0 + \sqrt{2} = \sqrt{2}$ which is irrational. Thus, x + y is not rational.

- \therefore $xy = 0 \times \sqrt{2} = 0$, which is rational. Hence, *xy* is not irrational.
- (c) As shown in (b), xy is not necessarily irrational.
- (*d*) x + y is necessary irrational. But xy can be either rational or irrational. Hence, (*d*) is true.
- **41.** Let x and (x + 1) be two consecutive integers. Then $(x + 1)^2 - x^2 = (x + 1 + x) (x + 1 - x) = (x + 1 + x) \times 1$ = (x + 1 + x) =sum of given numbers.
- **42.** If *a* and *b* are two rational numbers, then $\frac{a+b}{2}$ is a rational number lying between *a* and *b*.
- **43.** $B > A \Rightarrow A < B \Rightarrow (A B) < 0$. Since *A* and *B* are both positive integers, we have (A + B) > 0 and AB > 0. If (A = 1 and B = 2), we have AB < (A + B).
 - If (A = 2 and B = 3), we have (A + B) < AB.

Thus, we cannot say which one of A + B and AB has the highest value.

44.
$$0 < x < 1 \Rightarrow x^2 < x < 1$$
 ...(*i*)
 $\Rightarrow \frac{1}{x^2} > \frac{1}{x} > 1 > x > x^2$ [using (*i*)]

Hence, $\frac{1}{r^2}$ is the greatest.

45.
$$p < 1 \Rightarrow \frac{1}{p} > 1 \Rightarrow \frac{2}{p} > 2 \Rightarrow \frac{2}{p} - p > 2 - p > 0 \quad [\because p < 1]$$

Hence, $\left(\frac{-}{p} - p\right)$ is a positive number.

46.
$$(x^2 + x + 1) = \left(x^2 + x + \frac{1}{4}\right) + \frac{3}{4}$$

= $\left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4}$ $\left[\because \left(x + \frac{1}{2}\right)^2 \ge 0\right]$

Hence, $(x^2 + x + 1)$ is greater than or equal to $\frac{3}{4}$

47.
$$\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{7}\right) + \frac{1}{n} = \frac{(21+14+6)}{42} + \frac{1}{n} = \left(\frac{41}{42} + \frac{1}{n}\right).$$

This sum is a natural number when n = 42. So, each one of the statements that 2 divides n; 3 divides n and 7 divides n is true.

Hence, n > 84 is false.

48.
$$\frac{(16n^2 + 7n + 6)}{n} = \left(\frac{16n^2}{n} + \frac{7n}{n} + \frac{6}{n}\right) = \left(16n + 7 + \frac{6}{n}\right).$$
For $\left(16n + 7 + \frac{6}{n}\right)$ to be an integer, we may have $n = 1$
or $n = 2$ or $n = 3$ or $n = 6$.
Hence, 4 values of n will give the desired result.
49. $(p > q \text{ and } r < 0) \Rightarrow pr < qr \text{ is true.}$
50. $(X < Z \text{ and } X < Y) \Rightarrow X^2 < YZ.$
51. $x + y > p$ and $p > z \Rightarrow x + y > z$.

52.
$$\frac{(a-b)}{3.5} = \frac{4}{7} \Rightarrow (a-b) = \frac{4}{7} \times \frac{7}{2} = 2 \Rightarrow b < a.$$

53.
$$\frac{13}{1} = \frac{13}{(1-w)} \Longrightarrow \frac{w}{(1-w)} = 1 \Longrightarrow w = 1 - w \Longrightarrow 2w = 1 \Longrightarrow w = \frac{1}{2}.$$
$$\therefore (2w)^2 = 4w^2 = 4 \times \frac{1}{4} = 1.$$

Questions 54 to 57

Let the digits of the number in order be *A*, *B*, *C*, *D*, *E*. Then, $A > 5 E \Rightarrow E = 1$. *A*, *B*, *C* are all odd and none of the digits is $3 \Rightarrow A$, *B*, *C* are the digits from 5, 7, 9. Since *A* is the largest digit, so A = 9. $\therefore B = 5$ or 7 and C = 5 or 7. Now, the number *DE* is the product of two prime numbers. E = 1 and D = 2, 4, 6 or 8. 41 and 61 are prime numbers and 81 cannot be expressed as product of two primes. Only 21 can be expressed as the product of two prime numbers (21 = 3 × 7). So, D = 2. Hence, the number is 95721 or 97521. 54. The second digit of the number is either 5 or 7.

- **55.** The last digit of the number is 1.
- **56.** The largest digit in the number is 9.
- 57. The number is odd. So, it is not divisible by 2 or 4.
 Sum of digits = 9 + 7 + 5 + 2 + 1 = 24, which is divisible by 3 but not by 9.
 So, the given number is divisible by 3.
- **58.** The least prime number is 2.
- **59.** Statement 1. Let x = 4 and y = 15. Then, each one of x and y is a composite number.
 - But, x + y = 19, which is not composite.
 - \therefore Statement 1 is not true.

Statement 2. We know that 1 is neither prime nor composite.

- \therefore Statement 2 is not true.
- Thus, neither 1 nor 2 is correct.
- 60. Prime numbers between 0 and 50 are:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 and 47. Their number is 15.
- **61.** Each of the required numbers must divide (143 3) = 140 exactly.
 - Now, $140 = 5 \times 7 \times 4$.
 - Hence, the required prime numbers are 5 and 7.
- 62. Sum of first four prime numbers = (2 + 3 + 5 + 7) = 17.
- **63.** Sum of all prime numbers from 1 to 20 = (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19) = 77.
- **64.** Clearly, 11 is a prime number which remains unchanged when its digits are interchanged. And, $(11)^2 = 121$. Hence, the square of such a number is 121.
- 65. Let the required prime number be *p*. Let *p* when divided by 6 give *n* as quotient and *r* as remainder. Then *p* = 6*n* + *r*, where 0 ≤ *r* < 6 Now, *r* = 0, *r* = 2, *r* = 3 and *r* = 4 do not give *p* as prime.
 ∴ *r* ≠ 0, *r* ≠ 2, *r* ≠ 3 and *r* ≠ 4.
 - Hence, r = 1 or r = 5.
- **66.** Clearly, $21 = 3 \times 7$, so 21 is not prime.
- 67. Clearly, 19 is a prime number.
- 68. We know that 115 is divisible by 5. So, it is not prime.
 119 is divisible by 7. So, it is not prime.
 127 < (12)² and prime numbers less than 12 are 2, 3, 5, 7, 11.
 Clearly, 127 is not exactly divisible by any of them. Hence,
 127 is a prime number.

NUMBER SYSTEM

- 69. Clearly, 143 is divisible by 11. So, 143 is not prime. 289 is divisible by 17. So, 289 is not prime. 117 is divisible by 3. So, 117 is not prime. 359 < (20)² and prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. And, 359 is not exactly divisible by any of them. Hence, 359 is a prime number.
 70. Putting n = 1, 2, 3, 4 respectively in (2n + 1) we get:
- $(2 \times 1 + 1) = 3$, $(2 \times 2 + 1) = 5$, $(2 \times 3 + 1) = 7$ and $(2 \times 4 + 1) = 9$, where 3, 5, 7 are prime numbers.

 \therefore The smallest value of *n* for which (2n + 1) is not prime, is n = 4.

- 71. Clearly, 100 is divisible by 2. So, 100 is not prime.
 (101) < (11)² and prime numbers less than 11 are 2, 3, 5, 7.
 Clearly, 101 is not divisible by any of 2, 3, 5 and 7.
 Hence, 101 is the smallest 3-digit prime number.
- 72. Each one of 112, 114, 116, 118 is divisible by 2. So, none is prime.Each one of 111, 114, 117 is divisible by 3. So, none is prime.

Clearly, 115 is divisible by 5. So, it is not prime. Each one of 112 and 119 is divisible by 7. So, none is prime. Hence, there is only 1 prime number between 110 and 120, which is 113.

73. Let the given prime numbers be *p*, *q*, *r* and *s*. Then $p \times q \times r = 385 \text{ and } q \times r \times s = 1001$

$$\Rightarrow \frac{p \times q \times r}{q \times r \times s} = \frac{\frac{335}{385}}{\frac{1001}{143}} = \frac{5}{13} \Rightarrow \frac{p}{s} = \frac{5}{13} \Rightarrow p = 5 \text{ and } s = 13.$$

Hence the largest of these prime numbers is 13.

74. Let the required prime numbers be x, y, y + 36. Then, $x + y + y + 36 = 100 \Rightarrow x + 2y = 64$

Let x = 2. Then, $2y = 62 \Rightarrow y = 31$. So, these prime numbers are 2, 31 and 67. In given choices 67 is the answer.

75. $\sqrt{437} > 20$

All prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17, 19. 161 is divisible by 7, 221 is divisible by 13 and 437 is divisible by 19. 373 is not divisible by any of the above prime numbers.

: 373 is prime.

- **76.** The required arithmetic sequence of five prime numbers is 5, 11, 17, 23, 29 and therefore, the required 5th term is 29.
- 77. Each of the numbers 302, 303, 304, 305, 306, 308, 309, 310, 312, 314, 315, 316 and 318 is clearly a composite number. Out of 307, 311, 313, 317 and 319 clearly every one is prime. Hence, there are 5 prime numbers between 301 and 320.
- **78.** Clearly, $3 \neq 4n + 1$ and $3 \neq 4n + 3$ for any natural number *n*. ∴ Statement (1) is false. Putting p = 3, 5, 7, 11, 13, 17 etc. we get: $(p - 1) (p + 1) = (2 \times 4), (4 \times 6), (6 \times 8), (10 \times 12), (12 \times 12)$
 - 14), (16×18) etc., each one of which is divisible by 4.
 - \therefore Statement (2) is true.
 - Hence, (1) is false and (2) is true.
- **79.** $n = 1 \Rightarrow (n^2 + n + 41) = (1 + 1 + 41) = 43$, which is prime. $n = 10 \Rightarrow (n^2 + n + 41) = (100 + 10 + 41) = 151$, which is prime. $n = 20 \Rightarrow (n^2 + n + 41) = (400 + 20 + 41) = 461$, which is prime. $n = 40 \Rightarrow (n^2 + n + 41) = (1600 + 40 + 41) = 1681$, which is divisible by 41.

Thus, 1681 is not a prime number.

Hence n = 40 for which $(n^2 + n + 41)$ is not prime.

80. X₂ = (2 × 3) + 1 = 7, which is prime and X₂ + 1 = 8, which is even.
X₃ = (2 × 3 × 5) + 1 = 31, which is prime and X₃ + 1 = 32, which is even.
X₄ = (2 × 3 × 5 × 7) + 1 = 211, which is prime and X₄ + 1 = 212, which is even and so on.
Thus X_k is prime and (X_k + 1) is even.
Hence, 1 and 3 are true statements.
81. 6 × 3 (3 - 1) = 6 × 3(2) = 6 × 6 = 36.
82. Given Expression = (1234 + 2345 + 4567) - 3456 = (8146 - 3456) = 4690.

`					
	1	2	3	4	
	2	3	4	5	
+	4	5	6	7	
	8	1	4	6	
_	3	4	5	6	
	4	6	9	0	
_					

83. Let
$$5566 - 7788 + 9988 = x + 4444$$
. Then
(5566 + 9988) $- 7788 = x + 4444$
 $\Rightarrow 15554 - 7788 = x + 4444 \Rightarrow x + 4444 = 7766$

$$\Rightarrow x = (7766 - 4444) = 3322.$$

$$7766$$

-4444
-3322

84. Given Expression = 38649 - (1624 + 4483)= (38649 - 6107) = 32542.

85. Given Expression = 884697 - (773697 + 102479) = 884697 - 876176

= 8521.

86. Let $10531 + 4813 - 728 = x \times 87$. Then (15344 - 728) = $87 \times x \Rightarrow x = \frac{14616}{87} = 168$.

$$\begin{array}{r}
1 \ 0 \ 5 \ 3 \ 1 \\
\frac{1}{4} \ 4 \ 8 \ 1 \ 3 \\
\frac{1}{1} \ 5 \ 3 \ 4 \ 4 \\
\frac{-7 \ 2 \ 8 \\
\frac{1}{1} \ 4 \ 6 \ 1 \ 6 \\
\frac{7}{591} \\
\frac{522}{696} \\
\frac{696}{87} \\
\frac{522}{696} \\
\frac{696}{89} \\
\frac{696}{\times} \\
\frac{591}{522} \\
\frac{696}{696} \\
\frac{696}{\times} \\
\frac{696}{\times} \\
\frac{591}{522} \\
\frac{696}{696} \\
\frac{696}{\times} \\
\frac{591}{522} \\
\frac{696}{696} \\
\frac{69}{5} \\
\frac{696}{5} \\
\frac{591}{522} \\
\frac{696}{5} \\
\frac{696}{5}$$

90. Let 8888 + 848 + 88 - x = 7337 + 737. Then 9824 - x = 8074

$$\Rightarrow x = 9824 - 8074 \Rightarrow x = 1750.$$

$$9824 - 8074 \Rightarrow x = 1750.$$
91. Let $414 \times x \times 7 = 127512$. Then

$$x = \frac{127512}{414 \times 7} = \frac{18216}{414} = \frac{2024}{46} = \frac{1012}{23} = 44.$$

$$2\frac{44}{23|1012|} = \frac{44}{46} = \frac{1012}{23} = 44.$$

$$2\frac{44}{23|1012|} = \frac{92}{92} = \frac{9$$

21

99. Let $3578 + 5729 - x \times 581 = 5821$. Then $x \times 581 = (3578 + 5729) - 5821 \Rightarrow x \times 581 = (9307 - 5821)$ $= 3486 \Longrightarrow x = \frac{3486}{581} = 6.$ **100.** $-95 \div 19 = \frac{-95}{19} = -5.$ **101.** $12345679 \times 72 = 12345679 \times (70 + 2)$ $= (12345679 \times 70) + (12345679 \times 2)$ = (864197530 + 24691358)= 888888888. 864197530 + 24691358 8888888888 **102.** 8899 - 6644 - 3322 = $x - 1122 \Rightarrow 2255 - 3322 + 1122 = x$ $\Rightarrow x = 3377 - 3322 = 55.$ **103.** Let 74844 ÷ $x = 54 \times 63$. Then, $\frac{74844}{2} = 54 \times 63$ $\Rightarrow x = \frac{74844}{54 \times 63} = \frac{8316}{6 \times 63} = \frac{1386}{63} = \frac{198}{9} = 22 \cdot$ **104.** $1256 \times 3892 = (1000 + 200 + 50 + 6) \times 3892$ $= (1000 \times 3892) + (200 \times 3892) +$ $(50 \times 3892) + (6 \times 3892)$ = 3892000 + 778400 + 194600 + 23352= 4888352.3892000 778400 194600 + 2 3 3 5 2 4888352 **105.** $786 \times 964 = (800 - 14) \times 964$ $= (800 \times 964) - (14 \times 964)$ =(771200 - 13496) = 757704.771200 -13496 757704 **106.** $348 \times 265 = (350 - 2) \times 265 = (350 \times 265) - (2 \times 265)$ $= \{(300 + 50) \times 265\} - 530 = (300 \times 265)$ $+(50 \times 265) - 530$ = 79500 + 13250 - 530 = 92750 - 530= 92220. **107.** $(71 \times 29 + 27 \times 15 + 8 \times 4) = (80 - 9) \times 29 + 405 + 32 =$ $(80 \times 29) - (9 \times 29) + 437 = 2320 - 261 + 437 = 2757 - 261$ = 2496. **108.** Let $x \times (|a| \times |b|) = -ab$. Then, $x = \frac{-(ab)}{|ab|} = -1$. **109.** Let $(46)^2 - x^2 = 4398 - 3066$ Then, $(46)^2 - x^2 = 1332 \implies x^2 = (46)^2 - 1332$ $\therefore x^{2} = (50 - 4)^{2} - 1332 = (50)^{2} + 4^{2} - 2 \times 50 \times 4 - 1332$ $\Rightarrow x^2 = 2500 + 16 - 400 - 1332 = 2516 - 1732 = 784$ $\Rightarrow x = \sqrt{784} = 28.$ 2 784 (28 2516 -1732 4 384 48 784 384 27.9 -108- $\frac{\frac{50}{800}}{\frac{64}{2}}$ × $\frac{1296}{-\frac{36}{7}}$ **110.** $(800 \div 64) \times (1296 \div 36) =$ = 450.

111. $5358 \times 51 = 5358 \times (50 + 1) = 5358 \times 50 + 5358 \times 1$ $=\frac{5358\times100}{5358}+5358$ $= \frac{535800}{2} + 5358 = 267900 + 5358 = 273258.$ **112.** $587 \times 999 = 587 \times (1000 - 1) = (587 \times 1000) - (587 \times 1)$ = 587000 - 587 = 586413.**113.** $3897 \times 999 = 3897 \times (1000 - 1) = (3897 \times 1000) - (3897 \times 1)$ = 3897000 - 3897 = 3893103.**114.** $72519 \times 9999 = 72519 \times (10000 - 1)$ $= (72519 \times 10000) - (72519 \times 1)$ = 725190000 - 72519 = 725117481.725190000 -72519 725117481 **115.** $2056 \times 987 = 2056 \times (1000 - 13)$ $= (2056 \times 1000) - (2056 \times 13)$ = 2056000 - 26728 = 2029272.**116.** $1904 \times 1904 = (1904)^2 = (1900 + 4)^2$ $= (1900)^2 + 4^2 + 2 \times 1900 \times 4$ = 3610000 + 16 + 15200 = 3625216.**117.** $1397 \times 1397 = (1397)^2 = (1400 - 3)^2$ $= (1400)^2 + 3^2 - 2 \times 1400 \times 3 = 1960000 + 9 - 8400$ = 1951609.**118.** $(107 \times 107) + (93 \times 93) = (107)^2 + (93)^2$ $= (100 + 7)^{2} + (100 - 7)^{2}$ $= (a + b)^{2} + (a - b)^{2} = 2(a^{2} + b^{2})$ $= 2[(100)^{2} + 7^{2}] = 2[10000 + 49]$ $= 2 \times 10049 = 20098.$ **119.** $(217 \times 217) + (183 \times 183) = (217)^2 + (183)^2$ $= (200 + 17)^2 + (200 - 17)^2 = (a + b)^2 + (a - b)^2$ $= 2(a^2 + b^2)$, where a = 200, b = 17 $= 2 [(200)^{2} + (17)^{2}] = 2 [40000 + 289]$ $= (2 \times 40289) = 80578.$ **120.** $(106 \times 106 - 94 \times 94) = (106)^2 - (94)^2$ $= (106 + 94) (106 - 94) = (200 \times 12) = 2400.$ **121.** $(8796 \times 223 + 8796 \times 77) = 8796 \times (223 + 77)$ [by distributive law] $= (8796 \times 300) = 2638800.$ **122.** $(287 \times 287 + 269 \times 269 - 2 \times 287 \times 269)$ $= (287)^{2} + (269)^{2} - (2 \times 287 \times 269)$ $= (287 - 269)^2 = (18)^2 = 324.$ $[:: a^2 + b^2 - 2ab = (a - b)^2]$ **123.** $(476 + 424)^2 - 4 \times 476 \times 424 = (a + b)^2 - 4ab = (a - b)^2$ where $a = 476 \& b = 424 = (476 - 424)^2 = (52)^2 = (50 + 2)^2$ $= (50)^2 + 2^2 + 2 \times 50 \times 2$ = (2500 + 4 + 200) = 2704.**124.** $(112 \times 5^4) = 112 \times \left(\frac{10}{2}\right)^4 = \frac{112 \times 10000}{16} = 70000.$ **125.** $(5746320819 \times 125) = \frac{5746320819 \times (125 \times 8)}{8}$ $= \frac{5746320819 \times 1000}{8} = \frac{5746320819000}{8} = 718290102375.$ **126.** 935421 × 625 = $\frac{935421 \times 625 \times 16}{16} = \frac{935421 \times 10000}{16}$ $=\frac{9354210000}{10}=584638125.$

- **127.** $(999)^2 (998)^2 = (999 + 998) (999 998) = (1997 \times 1) = 1997.$
- Clearly, a = 10 and b = 9. **132.** Since $(a + b)^2 - (a - b)^2 = 4ab$, so the given expression should be a multiple of 4. So, the least value of 4ab is 32 and so the least value of *ab* is 8. Hence, the smallest value of a is 4 and that of b is 2. Hence, a = 4. **133.** Given Expression = $(397)^2 + (104)^2 + 2 \times 397 \times 104$ $= (397 + 104)^2 = (501)^2 = (500 + 1)^2$ $= (500)^2 + 1^2 + 2 \times 500 \times 1 = 250000 + 1 + 1000 = 251001.$ **134.** $(64)^2 - (36)^2 = 20 \times x \implies (64 + 36) (64 - 36) = 20 \times x$ $\Rightarrow x = \frac{100 \times 28}{20} = 140.$ **135.** Given Expression $=\frac{(a+b)^2-(a-b)^2}{ab}$ (where a = 489, b = 375) $=\frac{4ab}{ab} = 4$ **136.** Given Expression = $\frac{(a+b)^2 + (a-b)^2}{(a^2+b^2)}$, (where a = 963 and b = 476) = $\frac{2(a^2 + b^2)}{(a^2 + b^2)} = 2$. 137. Given Expression $= \frac{(a^3 + b^3)}{(a^2 - ab + b^2)}, \text{ (where } a = 768 \text{ and } b = 232) = (a + b)$ =(768+232)=1000.= (768 + 232) = 1000. **138.** Given Expression = $\frac{(854)^3 - (276)^3}{(854)^2 + (854 \times 276) + (276)^2}$ $=\frac{(a^3-b^3)}{(a^2+ab+b^2)}$, where a=854 and b=276= (a - b) = (854 - 276) = 578.**139.** Given Expression = $\frac{(753)^2 + (247)^2 - (753 \times 247)}{(753)^3 + (247)^3}$ $= \frac{(a^2 + b^2 - ab)}{(a^3 + b^3)}$, where a = 753 and b = 247 $= \frac{1}{(a+b)} = \frac{1}{(753+247)} = \frac{1}{1000}$ **140.** Given Expression = $\frac{(256)^2 - (144)^2}{112} = \frac{(256 + 144)(256 - 144)}{112}$ $= \frac{(400 \times 112)}{112} = 400.$ **141.** $\frac{(a^2 + b^2 + ab)}{(a^3 - b^3)} = \frac{a^2 + b^2 + ab}{(a - b)(a^2 + b^2 + ab)} = \frac{1}{(a - b)} = \frac{1}{(11 - 9)} = \frac{1}{2}$ **142.** $a + b + c = 0 \Rightarrow a + b = -c$, (b + c) = -a and (c + a) = -b $\Rightarrow (a + b) (b + c) (c + a) = (-c) \times$ $(-a) \times (-b) = -(abc).$ $(-a) \times (-b) = -(abc).$ **143.** $(a^2 + b^2 + c^2 - ab - bc - ca) = (a + b + c)^2 - 3 (ab + bc + ca)$ $= (7 + 5 + 3)^2 - 3 (35 + 15 + 21)$ $= (15)^2 - 3 \times 71$ = (225 - 213) = 12.

128. $(80)^2 - (65)^2 + 81 = (80 + 65)(80 - 65) + 81 = (145 \times 15)$

130. $(65)^2 - (55)^2 = (65 + 55)(65 - 55) = (120 \times 10) = 1200.$

129. $(24 + 25 + 26)^2 - (10 + 20 + 25)^2 = (75)^2 - (55)^2$ = (75 + 55) (75 - 55) = (130 × 20) = 2600.

+ 81 = (2175 + 81) = 2256.

131. $(a^2 - b^2) = 19 \implies (a + b) (a - b) = 19.$

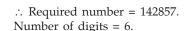
144. Both addition and multiplication of numbers are commutative and associative.

145. 9*H* + *H*8 + *H*6 = 230 \Rightarrow {(9 × 10) + *H*} + (10*H* + 8) + (10H + 6) = 230 $\Rightarrow 21 H + 104 = 230 \Rightarrow 21H = 126$ $\Rightarrow H = 6.$ **146.** Let the missing digit be x. Then, 1 (carried over) + 3 + x $+ x = 10 + x \Longrightarrow x = 6.$ **147**. Clearly, M = 0 since $304 \times 4 = 1216$. **148.** $5p9 + 327 + 2q8 = 1114 \implies (500 + 10p + 9) + (327) + (200)$ +10q + 8) = 1114 $\Rightarrow 10(p + q) + 1044 = 1114$ $\Rightarrow 10 (p + q) = 70 \Rightarrow (p + q) = 7$ \Rightarrow Maximum value of *q* is 7 [As minimum value of p = 0] **149.** $5P7 + 8Q9 + R32 = 1928 \implies (500 + 10P + 7) + (800 + 10Q)$ (+9) + (100R + 30 + 2) = 1928 $\Rightarrow 10P + 10Q + 100R + 1348 = 1928$ $\Rightarrow 10(P + Q + 10R) = 580$ \Rightarrow $P + Q + 10R = 58 \Rightarrow R = 5$ and P + Q = 8 or R = 4 and P + Q = 18 \Rightarrow Maximum value of *Q* is 9 [for P = 9 in second case] **150.** Let $\frac{1x \, 5y4}{148} = 78$. Then, $10000 + 1000 x + 500 + 10y + 4 = 148 \times 78$ \Rightarrow 10000 + 1000x + 500 + 10y + 4 = 11544 = 10000 + 1000 + 500 + 40 + 4 $\Rightarrow 1000x = 1000 \Rightarrow x = 1.$ (3) **151.** Let 6x43 - 46y9 = 1904. 6 x 4 3Clearly, y = 3 and x = 5. -46 u 9Hence * must be replaced by 5. 1904 **152.** 5 P 9 - 7 Q 2 + 9 R 6 = 823 \Rightarrow (500 + 10P + 9) - (700 + 10Q + 2) + (900 + 10R + 6) = 823 $\Rightarrow (500 + 900 - 700) + 10(P + R - Q) + (9 + 6 - 2) = 823$ \Rightarrow 700 + 10(P + R - Q) = 810 = 700 + 110 \Rightarrow 10 (P + R - Q) = 110 $\Rightarrow P + R - Q = 11$ $\Rightarrow Q = (P + R - 11).$ To get maximum value of Q we take P = 9 and R = 9. This gives Q = (9 + 9 - 11) = 7. Hence, the maximum value of Q is 7. **153.** Let the required digit be *x*. Then x + 1x + 2x + x3 + x1 = 21x \Rightarrow x + 10 + x + 20 + x + 10x + 3 + 10x + 1 = 200 + 10 + x \Rightarrow 22x = 210 - 34 = 176 \Rightarrow x = 8. Hence, the required digit is 8. **154.** It is given that D = 0. So, we have A = 5. So, 1 is carried over. $1 + B + C = 10 + C \Longrightarrow 1 + B = 10 \Longrightarrow B = 9.$ Now, $1 + C + C = A \Rightarrow 1 + 2C = 5 \Rightarrow 2C = 4 \Rightarrow C = 2$. Hence B = 9. 0C B A = 5+ C C A = 5AC0 **155.** We have, C = 2.

156. Since 13b7 is divisible by 11, we have $(7+3) - (b+1) = 0 \Longrightarrow 9 - b = 0 \Longrightarrow b = 9.$ Putting b = 9, a + 8 = 9 we get a = 1. Hence, (a + b)= (1 + 9) = 10.4 a 3 984 13b7 **157**. Clearly, we have $ab \times b = 24$ and $ab \times a = 12$. $\therefore \quad \frac{ab \times b}{ab \times a} = \frac{24}{12} \Longrightarrow \frac{b}{a} = \frac{2}{1} \Longrightarrow a = 1, b = 2.$ **158.** Clearly, $111 \times 1 = 111 \neq 8111$. But, $999 \times 9 = 8991$. Hence, we have 9 in place of *. **159.** $(1 * 2) = 1 + 6 \times 2 = 1 + 12 = 13.$ $(1 * 2) * 3 = 13 * 3 = 13 + 6 \times 3 = 13 + 18 = 31.$ **160.** $|\underline{8} - |\underline{7} - |\underline{6} = 8 \times 7 \times |\underline{6} - 7 \times |\underline{6} - |\underline{6}|$ $= (56 - 7 - 1) \times |6 = 48 \times |6 = 6 \times 8 \times |6|$ **161.** Highest power of 3 in 99! = $\left[\frac{99}{3}\right] + \left[\frac{99}{3^2}\right] + \left[\frac{99}{3^3}\right] + \left[\frac{99}{3^4}\right]$ $= \left\lceil \frac{99}{3} \right\rceil + \left\lceil \frac{99}{9} \right\rceil + \left\lceil \frac{99}{27} \right\rceil + \left\lceil \frac{99}{81} \right\rceil$ = 33 + 11 + 3 + 1 = 48.Since 9 = 3², so highest power of 9 dividing 99! = $\frac{48}{2}$ = 24. **162.** Every number from 5 onwards is completely divisible by 5. \therefore ($|5 + |6 + |7 + \dots + |100$) is completely divisible by 5. And, $(\underline{1} + \underline{2} + \underline{3} + \underline{4}) = (1 + 2 + 3 \times 2 \times 1 + 4 \times 3 \times 2 \times 1) = (1 + 2 + 6 + 24) = 33.$ Clearly, 33 when divided by 5 leaves a remainder 3. Hence, $(1 + 2 + 3 + 4 + 5 + \dots + 100)$ when divided by 5 leaves a remainder 3. **163.** $6^{10} \times 7^{17} \times 11^{27} = (2 \times 3)^{10} \times 7^{17} \times 11^{27} = 2^{10} \times 3^{10} \times 7^{17} \times 11^{27}$. Number of prime factors in the given expression = (10 + 10)10 + 17 + 27 = 64.**164.** $(30)^7 \times (22)^5 \times (34)^{11} = (2 \times 3 \times 5)^7 \times (2 \times 11)^5 \times (2 \times 17)^{11}$ = $2^{(7+5+11)} \times 3^7 \times 5^7 \times 11^5 \times 17^{11}$ $= (2^{23} \times 3^7 \times 5^7 \times 11^5 \times 17^{11}).$ Number of prime factors = (23 + 7 + 7 + 5 + 11) = 53. **165.** Let $x \times 48 = 173 \times 240$. Then, $x = \frac{173 \times 240}{48} = 173 \times 5 = 865$.

166. $(1000 + x) > (1000 \times x)$. Clearly, x = 1. **167.** Let the original number be *x*. Then,

$$\frac{(x+7)\times5}{9} - 3 = 12 \Rightarrow \frac{5x+35}{9} = 15 \Rightarrow 5x+35 = 135$$


 $\Rightarrow 5x = 100 \Rightarrow x = 20.$

168. 38950 is completely divisible by 410 only. Hence ₹ 410 is the correct answer.

169. Let the four consecutive even numbers be a, a + 2, a + 4 and a + 6. Then, $a + a + 2 + a + 4 + a + 6 = 180 \Rightarrow 4a = 168 \Rightarrow a = 42$. So, these numbers are 42, 44, 46 and 48. Sum of next four consecutive even numbers = (50 + 52 + 54 + 56) = 212.

170. Number on thumbs = 1, 9, 17, 25, This is an *AP* in which a = 1 and d = (9 - 1) = 8.

 $T_n = a + (n-1)d = 1 + 8(n-1) = (8n-7).$ 179. $8n - 7 = 1994 \Rightarrow 8n = 2001 \Rightarrow n = 250.$ $T_{250} = 1 + (250 - 1) \times 8 = 1 + 249 \times 8 = 1993.$ So, 1993 lies on thumb and 1994 on index finger. 171. Out of four consecutive integers two are even and therefore, their product is even and on adding 1 to it, we get an odd integer. So, n is odd. Some possible values of n are as under: $n = 1 + (1 \times 2 \times 3 \times 4) = (1 + 24) = 25 = 5^2,$ $n = 1 + (2 \times 3 \times 4 \times 5) = (1 + 120) = 121 = (11)^2$ $n = 1 + (3 \times 4 \times 5 \times 6) = (1 + 360) = 361 = (19)^2$ $n = 1 + (4 \times 5 \times 6 \times 7) = 841 = (29)^2$ and so on. Hence, *n* is odd and a perfect square. **172.** $(x^2 + y^2) = (x + y)^2 - 2xy = (15)^2 - 2 \times 56$ = (225 - 112) = 113.**173.** $(2^2 + 4^2 + 6^2 + \dots + 40^2) = (1 \times 2)^2 + (2 \times 2)^2 + (2 \times 3)^2 + \dots + (2 \times 20)^2 = 2^2 \times (1^2 + 2^2 + 3^2 + \dots + 20^2)$ $= (4 \times 2870) = 11480.$ $-(4 \times 2070) - 11400.$ **174.** $5^2 + 6^2 + \dots + 10^2 + 20^2 = (1^2 + 2^2 + 3^2 + \dots + 10^2) - (1^2)$ $+ 2^2 + 3^2 + 4^2) + 400$ $= \frac{1}{6}n(n+1)(2n+1) - (1+4+9+16) + 400, \text{ where } n = 10$ $= \left(\frac{1}{6} \times 10 \times 11 \times 21\right) - 30 + 400 = (385 - 30 + 400) = 755.$ **175.** $(6 + 12 + 18 + 24 + \dots + 60) = 6 \times (1 + 2 + 3 + 4 + \dots + 60) = 6 \times (1 + 2 + 3 + 4 + \dots + 60)$ $10) = 6 \times 55 = 330.$ **176.** $2^m > 960$ when the least value of *m* is 10. Then, $2^{10} = 1024$ and $1024 - 960 = 64 = 2^6$. \therefore m = 10 and n = 6. 177. We keep on dividing 33333... by 7 till we get 0 as remainder. 47619 7)333333 (28 53 49 43 42 13 7 63 63 × \therefore Required number = 47619 178. We keep on dividing 99999.... by 7 till we get 0 as remainder. 142857 7)9999999 (29 28 19 14 59 56 39 35 49 49

×

56
987) 559981(
4935
6648
5922
7261
2961
×

Clearly, 7261 must be replaced by 2961, which is possible if 6648 is replaced by 6218, which in turn is possible if 5599 is replaced by 5556.

Thus, the correct number is 555681.

180. Clearly, multiples of 2 and 5 together yield 0. Since the product of odd numbers contains no power of 2, so the given product does not give 0 at the unit place.

181. Let $N = 1 \times 2 \times 3 \times 4 \times \dots \times 1000 = 1000!$ Clearly, the highest power of 2 in N is very high as compared to that of 5. So, the number of zeros in N will be equal to the highest power of 5 in N. : Required number of zeros $= \left[\frac{1000}{5}\right] + \left[\frac{1000}{5^2}\right] + \left[\frac{1000}{5^3}\right] + \left[\frac{1000}{5^4}\right]$ = 200 + 40 + 8 + 1 = 249.**182.** Let $N = 10 \times 20 \times 30 \times \dots \times 1000 = 10^{100} \times (1 \times 2 \times 3)^{100}$ $\times 4 \times \dots 100 = 10^{100} \times 100!$ Number of zeros in 100 ! = Highest power of 5 in 100 ! $= \left[\frac{100}{5}\right] + \left[\frac{100}{5^2}\right] = 20 + 4 = 24.$ \therefore Number of zeros in N = 100 + 24 = 124. **183.** Let $N = 5 \times 10 \times 15 \times 20 \times 25 \times 30 \times 35 \times 40 \times 45 \times 50$ $= 5^{10} \times (1 \times 2 \times 3 \times 4 \times \dots \times 10) = 5^{10} \times 10!$ Highest power of 2 in 10! = $\left[\frac{10}{2}\right] + \left[\frac{10}{2^2}\right] + \left[\frac{10}{2^3}\right] = 5 + 2 + 1 = 8.$ Highest power of 5 in $10! = \left| \frac{10}{5} \right| = 2.$ $\therefore N = 2^8 \times 5^{12} \times k.$ Since highest power of 2 is less than that of 5, so required number of zeros = 8. 184. Clearly, highest power of 2 is much higher as compared to that of 5 in 60!, so Required number of zeros = Highest power of $5 = \left\lceil \frac{60}{5} \right\rceil + \left\lceil \frac{60}{5^2} \right\rceil = 12 + 2 = 14.$ **185.** Let $N = (1 \times 3 \times 5 \times 7 \times ... \times 99) \times 128$. Clearly, N contains 10 multiples of 5 (5, 15, 25, 35,, 95) and only one multiple of 2 i.e. 128 or 2^7 . Clearly, highest power of 5 in *N* is greater than that of 2. \therefore Number of zeros in N = Highest power of 2 in N = 7. **186.** $N = 2 \times 4 \times 6 \times 8 \times \dots \times 98 \times 100$ $= 2^{50} \times (1 \times 2 \times 3 \times \dots \times 49 \times 50) = 2^{50} \times 50!$ Clearly, the highest power of 2 in N is much higher than that of 5. \therefore Number of zeros in N = Highest power of 5 in N =

$$\frac{50}{5} \end{bmatrix} + \left[\frac{50}{5^2} \right] = 10 + 2 = 12.$$

187. Clearly, the list of prime numbers from 2 to 99 has only 1 multiple of 2 and only 1 multiple of 5.So, number of zeros in the product = 1.

39

188. Let $N = 3 \times 6 \times 9 \times 12 \times \dots \times 102 = 3^{34} \times (1 \times 2 \times 3)^{34}$ $\times 4 \times ... \times 34 = 3^{34} \times 34!$ Clearly, highest power of 2 in 34 ! is much greater than that of 5. So, number of zeros in N = Highest power of 5 in 34! = $\left[\frac{34}{5}\right] + \left[\frac{34}{5^2}\right] = 6 + 1 = 7.$ 202. **189.** 3^4 gives unit digit 1. So, $(3^4)^{500}$ gives unit digit 1. And, 3^3 gives unit digit 7. :. $(13)^{2003}$ gives unit digit = $(1 \times 7) = 7$. **190.** 3^4 gives unit digit 1. So, $(3^4)^{24}$ gives unit digit 1. And, 3^3 gives unit digit 7. :. $3^{99} = (3^4)^{24} \times 3^3$ gives unit digit (1 × 7) i.e. 7. **191.** (*A*) 7^4 gives unit digit 1. So, $7^{16} = (7^4)^4$ gives unit digit 1. \therefore (1827)¹⁶ gives unit digit 1. So, $A \rightarrow (1)$. (*B*) 3^4 gives unit digit 1. So, $(3^4)^4$ gives unit digit 1. :. $3^{19} = 3^{16} \times 3^3$ gives unit digit = $(1 \times 7) = 7$. $(2153)^{19}$ gives unit digit 7. So, $B \rightarrow (4)$. *.*. (C) 9^2 gives unit digit 1. So, $(9^2)^{10}$ gives unit digit 1. : $9^{21} = (9^{20} \times 9)$ gives unit digit = $(1 \times 9) = 9$. \therefore (5129)²¹ gives unit digit = 9. So, $C \rightarrow$ (5). Hence, $A \quad B \quad C$ is the correct result. 1 4 5 **192.** Unit digit of $(67)^{25}$ = Unit digit of 7^{25} . Unit digit of 7^4 is 1 and so the unit digit of $(7^4)^6$ is 1. :. Unit digit of $7^{25} = (1 \times 7) = 7$. Hence, the unit digit of $(7^{25} - 1)$ is (7 - 1) = 6. **193.** Unit digit in the given product = Unit digit of $(4 \times 8 \times 7)$ \times 3), which is 2. **194.** Unit digit in the given product = 8. Unit digit of $(9 \times 6 \times x \times 4)$ is 8. So, x = 3. **195.** Unit digit of 7^4 is 1. So, the unit digit of $(7^4)^{23}$ is 1. \therefore Unit digit of 7^{95} = Unit digit of $(7^{92} \times 7^3) = (1 \times 3) = 3$. 18. Unit digit of 3^4 is 1. So, the unit digit of $(3^4)^{14}$ is 1. ... Unit digit of 3^{58} = Unit digit of $(3^{56} \times 3^2) = (1 \times 9) = 9$. Hence, the unit digit of $(7^{95} - 3^{58}) = (13 - 9) = 4$. **196.** Unit digit of 4^2 is 6. So, unit digit in $(4^2)^{63}$ is 6. ... Unit digit of $(784)^{126}$ = Unit digit in 4^{126} , which is 6. Unit digit in 4^{127} = Unit digit in $(4^{126} \times 4)$ = Un Unit digit in 4¹²⁷ = Unit digit in $(4^{126} \times 4)$ = Unit digit in (6×4) , which is 4. \therefore Unit digit in (784)¹²⁷ is 4. Hence, unit digit of $\{(784)^{126} + (784)^{127}\}$ = Unit digit of (6 + 4) = Unit digit of 10, which is 0. **197**. Unit digit in $[(251)^{98} + (21)^{29} - (106)^{100} + (705)^{35} - (16)^4 +$ 259] = Unit digit in (1 + 1 - 6 + 5 - 6 + 9) = 4. 198. Unit digit in the given product = Unit digit in $(4^{1793} \times 5^{317} \times 1^{491})$ Unit digit in 4^2 is 6 and so the unit digit in $(4^2)^{896}$ is 6. \therefore Unit digit of 4^{1793} = Unit digit in (6 × 4) = Unit digit in 24, which is 4. Unit digit in 5^{317} is 5 and the unit digit in 1^{491} is 1. \therefore Unit digit in the given product = Unit digit in (4 × 5 \times 1), which is 0. **199.** Let x = 2y. Then, $x^{4n} = (2y)^{4n} = \{(2y)^4\}^n = (16 y^4)^n$. y = 1, 2, 3, 4, 5, 6, 7, 8, 9 gives unit digit as 6 in $(16y^4)^n$. But, y = 5, gives unit digit 0 in $(16 y^4)^n$. Hence, the unit digit is 0 or 6. **200.** In 5^n we have 5 as unit digit and in 6^m we have 6 as unit digit.

 \therefore Unit digit in $(5^n + 6^m) =$ Unit digit in (5 + 6) = Unit digit in 11 = 1. **201.** We have: $(2^{12n} - 6^{4n}) = (2^{12n} - 2^{4n} \times 3^{4n}) = 2^{4n} (2^{8n} - 3^{4n}).$ Putting n = 1, we get the number $2^4 (2^8 - 3^4)$ $= 16 (256 - 81) = (16 \times 175) = 2800$ Hence, the number formed by last two digits is 00. $=(0.2)^{2000}$. Last digit of $(0.2)^{2000}$ = Last digit of $(0.2)^4$ = 6. **203.** Sum of digits in the two numbers = 19 + 15 = 34. So, the product will have 33 or 34 digits. Since $36 \times 34 = 1224$ (i.e. product has 2 + 2 = 4 digits), so the number of digits in x is 34. **204.** We know that a number having $x_{y,z}$ as its digits, is a multiple of 11, if z + x - y = 0Hence, y = z + x. **205.** 6135*n*2 is divisible by 9 if (6 + 1 + 3 + 5 + n + 2) = (17 + n)is divisible by 9. This happens when the least value of n is 1. **206.** In 978626, we have (6 + 6 + 7) - (2 + 8 + 9) = 0. Hence, 978626 is completely divisible by 11. 207. Sum of all digits = 12, which is divisible by 3. So, the given number is divisible by 3. (Sum of digits at odd places) - (Sum of digits at even places) = 6 - 6 = 0.So, the given number is divisible by 11. The given number when divided by 37 gives 3003003003. So, the given number is divisible by 37. The given number when divided by 111 gives 1001001001. Clearly, it is divisible by 111 as well as by 1001. Hence, the given number is divisible by each one of 3, 11, 37, 111 and 1001. **208.** We have $18 = 2 \times 9$, where 2 and 9 are co-primes. But, 65043 is not divisible by 2. So, it is not divisible by **209.** Let the missing digit be *x*. Then, (80 + x) must be divisible by 4. Hence, x = 4. 210. Sum of the digits in 4006020 is 12, which is divisible by 3. Hence, 4006020 is divisible by 3. **211.** Clearly, (*d*) is true. **212.** For 4823718 we have (8 + 7 + 2 + 4) - (1 + 3 + 8) = (21 - 12) = 9, which is not a multiple of 11. \therefore 4823718 is not divisible by 11. Consider the number 4832718. We have (8 + 7 + 3 + 4) - (1 + 2 + 8) = (22 - 11) = 11, which is a multiple of 11. Hence, 4832718 is divisible by 11. 213. Consider the number 17325. Its unit digit is 5. So, it is divisible by 5. Sum of its digits = (5 + 2 + 3 + 7 + 1) = 18, which is divisible by 3. So, the given number is divisible by 3.

And, since 5 and 3 are co-primes, so the given number is divisible by (5×3) , i.e. 15.

214. Given number is 7386038. Sum of its digits = 35, which is not divisible by any of 3 and 9.

So, the given number is not divisible by any of 3 and 9. Also, 38 is not divisible by 4. So, the given number is not divisible by 4.

Also, (8 + 0 + 8 + 7) - (3 + 6 + 3) = (23 - 12) = 11. So, the given number is divisible by 11. **215.** (2 + 4 + 9 + 8 + 4) = 27, (2 + 6 + 7 + 8 + 4) = 27 and (2 + 6 + 7 + 8 + 4) = 27+8+5+8+4) = 27.So, each one is divisible by 3 and 9 both. Also, 84 is divisible by 4. So, each one is divisible by 4. Hence, each given number is divisible by 3, 9 and 4. So, the statements 1, 2 and 3 are all correct. 216. We know that 872 is divisible by 8. Hence 923872 is divisible by 8. **217.** Here (5 + 9 + x + 7) - (4 + 3 + 8) = 6 + x. So, we must have x = 5. **218.** Take m = 15 and n = 20. Then, each one of m and n is divisible by 5. But, (m + n) is not divisible by 10. Hence, (m + n) is divisible by 10 is not true. 219. An integer is divisible by 16, if the number formed by last 4 digits is divisible by 16. 220. Clearly, 639 is not divisible by 7. Consider 2079. Sum of its digits = (2 + 0 + 7 + 9) = 18. So, it is divisible by both 3 and 9. Also, (79 - 2) = 77, which is divisible by 7. **230.** I. So, 2079 is divisible by 7. Also, (9 + 0) - (7 + 2) = 0. So, 2079 is divisible by 11. Hence, 2079 is divisible by each one of 3, 7, 9 and 11. **221.** Let the given number be $476xy_0$. Then $(0 + x + 7) - (y + 6 + 4) = 0 \Rightarrow x - y - 3 = 0 \Rightarrow x - y = 3.$ Also, (4 + 7 + 6 + x + y + 0) = (17 + x + y) must be divisible by 3. Since $x \neq 0$, $y \neq 0$, so $x + y \neq 1$. $\therefore x + y = 4$ or 7 or 10 etc. $(x + y = 4 \text{ and } x - y = 3) \Rightarrow x = 7/2$, which is not admissible. $(x + y = 7 \text{ and } x - y = 3) \Rightarrow x = 5 \text{ and } y = 2.$ **222.** Sum of the digits in respective numbers is: 9, 12, 18, 9, 21, 12, 18, 21, 15 and 24. Out of these 12, 21, 12, 21, 15, 24 are divisible by 3 but not by 9. So, the number of required numbers is 6. **223.** Let the unit's place be *x* and the thousand's place be *y*. Then, 357y25x is divisible by 5 only when x = 0 or x = 5. Also, this number is divisible by 3 only when sum of its digits is divisible by 3. So, (22 + x + y) must be divisible by 3. $\therefore x + y = 2$ by 3 Taking x = 0, we get y = 2. So, the unit place = 0 and thousand's place = 2. **224.** Clearly, (7 + 8) - (9 + 6) = 0. So, 6897 is divisible by 11. Also, $\frac{6897}{19} = 363$. So, 6897 is divisible by 19. Hence, 6897 is divisible by both 11 and 19. **225.** We have $24 = 3 \times 8$, where 3 and 8 are co-primes. by 11. Clearly, 718 is not divisible by 8. So, 35718 is not divisible by 8. 810 is not divisible by 8. So, 63810 is not divisible by 8. 804 is not divisible by 8. So, 537804 is not divisible by 8. 736 is divisible by 8. So, 3125736 is divisible by 8. Also, sum of its digits = (3 + 1 + 2 + 5 + 7 + 3 + 6) = 27, which is divisible by 3. So, 3125736 is divisible by 3 also. Hence, it is divisible by 24. **226.** Sum of the digits of the given number = $(7 \times 3) + (14 \times 3)$ 1) = (21 + 14) = 35, which is not divisible by 3. So the given number is not divisible by 3.

And, $\frac{325325}{13} = 25025$. So, 325325 is divisible by 13.

Hence, it is divisible by all 7, 11 and 13.

- **228.** We first divide the number into groups of 3 digits from the right \rightarrow 3 0X0 103 Difference of sum of numbers at odd and even places = (103 + 3) - 0X0 = 106 - 0X0, which must be divisible by 13.
 - 106 0X0 is divisible by 13 only for X = 8.
- **229.** We know that 11 and 13 are co-prime. So, a number divisible by both 11 and 13 will be divisible by (11 × 13).
- **230.** I. We have(195 195) 0
 - : 195195 is divisible by 7.
 - II. We have (181 181) = 0
 ∴ 181181 is divisible by 7.
 - III. We have (120 120) = 0
 ∴ 120120 is divisible by 7.
 - IV. We have (891 891) = 0
 ∴ 891891 is divisible by 7.
 - Hence, all are divisible by 7.
- **231.** Since 653xy is divisible by 80, we must have y = 0. Now, 653x0 must be divisible by both 5 and 16. Clearly, it is divisible by 5 for all values of *x*. Now, the number 53x0 must be divisible by 16. The least value of *x* is clearly 6. So, x + y = 6 + 0 = 6.
- **232.** We know that $33 = 11 \times 3$, where 11 and 3 are co-primes. So, the given number must be divisible by both 11 and 3. Since 5ABB7A is divisible by 11, we have (A + B + A) = (7 + B + 5) = (2A 12) is either 0 or 11

$$\Rightarrow 2A - 12 = 0 \text{ or } 2A - 12 = 11 \Rightarrow A = 6 \left[\because A \neq \frac{23}{2} \right]$$

So, the number becomes 56*BB*76, which is divisible by 3. \therefore (5 + 6 + *B* + 7 + 6) = (24 + 2*B*) must be divisible by 3.

$$\therefore 2B = 6 \implies B = 3 \qquad \qquad \left[\because B \neq 0 \text{ and } B \neq \frac{3}{2} \right]$$

Hence, (A + B) = (6 + 3) = 9.

233. We have, 99 = (11 × 9), where 11 and 9 are co-primes. Consider the number 114345. Clearly, (5 + 3 + 1) - (4 + 4 + 1) = 0. So, 114345 is divisible by 11. Also, sum of its digits = (1 + 1 + 4 + 3 + 4 + 5) = 18, which is divisible by 9. ∴ 114345 is divisible by 9. Hence, it is divisible by 9. Hence, it is divisible by (11 × 9), i.e. 99.
234. Let the unit's digit be *x* and ten's digit be *y*. Then, the

number is 3422213*yx*.

Also, $99 = (11 \times 9)$, where 11 and 9 are co-primes.

Since the given number is divisible by 9, it follows that (3 + 4 + 2 + 2 + 2 + 1 + 3 + y + x) = (17 + y + x) must be divisible by 9.

So,
$$y + x = 1$$
 or $y + x = 10$.